DNA sequences tightly bound to proteins in mouse chromatin: identification of murine MER sequences. 1994

Z Avramova, and O Georgiev, and R Tsanev
Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia.

The finding of stably (tightly) associated DNA-protein complexes in eukaryotic chromatin has provoked many hypotheses and speculations concerning their possible role. While the answer of this question is not envisaged yet, it is clear that elucidation of the nature of the individual components involved in such complexes is a necessary step in this direction. Here, the nature of several mouse DNA sequences in the vicinity of a putative stably attached protein is studied. Eight independently isolated clones containing such sequences were compared to known sequences in GenBank. Two clones were found to belong to different subfamilies of repetitive sequences, organized into a larger family--the L1md family. One clone harbors a sequence that is a member of the Alu-type family. Four of the cloned sequences are preset in low copy numbers, but the computer search found similar sequences in various genomic regions of different rodents. These facts, together with the finding that regions homologous to the above clones often flank other repetitive elements in the genome, suggest that the cloned sequences belong to new, not yet described families of repeats in the murine genome. It is possible that they correspond to the medium reiteration frequency sequences, MER-sequences, discovered recently in the human genome (Jurka, 1990; Kaplan and Duncan, 1990). Particularly intriguing is the homology found at the integration sites of polyoma virus in two transformed cell lines with two of these clones.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

Z Avramova, and O Georgiev, and R Tsanev
January 1989, The Italian journal of biochemistry,
Z Avramova, and O Georgiev, and R Tsanev
August 1980, Virology,
Z Avramova, and O Georgiev, and R Tsanev
November 1988, Biochemistry international,
Z Avramova, and O Georgiev, and R Tsanev
November 1982, Molecular biology reports,
Z Avramova, and O Georgiev, and R Tsanev
July 1979, Nucleic acids research,
Z Avramova, and O Georgiev, and R Tsanev
January 1989, Cell biophysics,
Z Avramova, and O Georgiev, and R Tsanev
May 1981, Experimental cell research,
Z Avramova, and O Georgiev, and R Tsanev
February 2019, The journal of physical chemistry. B,
Z Avramova, and O Georgiev, and R Tsanev
December 1981, European journal of biochemistry,
Z Avramova, and O Georgiev, and R Tsanev
October 2010, Biochemistry. Biokhimiia,
Copied contents to your clipboard!