Effects of tyrosine-->phenylalanine mutations on auto- and trans-phosphorylation reactions catalyzed by the insulin receptor beta-subunit cytoplasmic domain. 1994

J E Smith, and Z F Sheng, and R G Kallen
Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6059.

Activation of the insulin receptor kinase is closely associated with autophosphorylation of several tyrosine residues in the cytoplasmic domain of the receptor's two beta-subunits. To determine the contribution of these tyrosine phosphorylations to autoactivation of the receptor kinase, we have blocked phosphorylation at specific tyrosine by replacing these tyrosine residues, individually and in combination, with phenylalanine in a soluble 45-kD analog of the cytoplasmic insulin receptor kinase domain (CIRK). Kinetic studies of auto- and transphosphorylation with this panel of mutated CIRKs indicate that: (i) None of the tyrosines (953, 960, 1,146, 1,150, 1,151, 1,316, or 1,322) are necessary for catalysis: all single Y-->F mutants retain the ability to autoactivate comparable to the parent CIRK. (ii) Two of the tyrosine autophosphorylation sites, either tyrosine 1,150 or 1,151, contribute most (70-80%) of the autoactivation, because replacement of these two tyrosines by phenylalanine was the minimal change that abolishes autoactivation. (iii) A mutant CIRK having all seven reported tyrosine phosphorylation sites replaced by phenylalanine retained basal kinase activity but was incapable of autoactivation. These findings imply that autoactivation can occur without phosphorylation having occurred at any single site (953, 960, 1,146, 1,150, 1,151, 1,316, or 1,322), and autophosphorylation need not follow an ordered, sequential pathway beginning, for example, at tyrosine 1,146 as proposed for the intact insulin receptor.

UI MeSH Term Description Entries
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

J E Smith, and Z F Sheng, and R G Kallen
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
J E Smith, and Z F Sheng, and R G Kallen
April 1984, The Journal of biological chemistry,
J E Smith, and Z F Sheng, and R G Kallen
December 1992, Biochemical and biophysical research communications,
J E Smith, and Z F Sheng, and R G Kallen
May 1995, The Journal of biological chemistry,
J E Smith, and Z F Sheng, and R G Kallen
April 1986, The Journal of biological chemistry,
J E Smith, and Z F Sheng, and R G Kallen
January 1987, The Biochemical journal,
J E Smith, and Z F Sheng, and R G Kallen
May 1989, The Journal of biological chemistry,
J E Smith, and Z F Sheng, and R G Kallen
October 1999, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!