A review of the role of platelet membrane glycoproteins in the platelet-vessel wall interaction. 1993

A T Nurden, and P Nurden
URA 1464 CNRS, Hôpital Cardiologique, Pessac, France.

This review concerns our understanding of the molecular basis of platelet function in haemostasis. In particular, we indicate how research into platelet membrane glycoprotein (GP) receptors is yielding vital information on the mechanisms of platelet adhesion and aggregation. These receptors, nearly always complexes of two or more subunits, are now known to belong to distinct gene families, some of which are unique to platelets while others are widely distributed in mammalian tissues. GP Ib-IX complexes are responsible for the high-shear-rate-dependent adhesion of platelets to von Willebrand factor (vWF) exposed within the subendothelium of damaged vessels. Other adhesion receptors include members of the VLA subclass of the integrin family: VLA-2, VLA-5 and VLA-6, which mediate platelet adhesion to collagen, fibronectin and laminin, respectively. Platelet aggregation is initiated by distinct populations of receptors specific for each physiological agonist. Many of these receptors, including the highly important and recently cloned thrombin receptor, have seven transmembrane domains and possess highly selective agonist-binding determinants. Finally, we highlight platelet aggregation and the role of GP IIb-IIIa complexes which, following platelet activation, bind fibrinogen and other adhesive proteins. The latter, through being polyvalent for GP IIb-IIIa, then form the bridges linking adjoining platelets. The 'ligand-binding pocket' of GP IIb-IIIa contains at least three sequences essential for ligand binding; fibrinogen also binds to the activated complex through identified domains, one of which, the Arg-Gly-Asp (RGD) sequence, is also found in vWF and the other adhesive proteins able to support platelet aggregation. Finally, we further describe how these, and other glycoproteins in both surface and internal membrane systems, constitute a complex receptor network capable of translocation and reorganization after platelet activation. In cardiovascular disease, platelets accumulate within arteries whose luminal surface has been modified through atherosclerosis. Recent molecular advances are yielding exciting opportunities for the development of new, and more powerful, drugs acting as specific inhibitors of thrombotic processes.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums

Related Publications

A T Nurden, and P Nurden
May 1979, Archives internationales de pharmacodynamie et de therapie,
A T Nurden, and P Nurden
August 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A T Nurden, and P Nurden
January 2012, Handbook of experimental pharmacology,
A T Nurden, and P Nurden
December 1989, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
A T Nurden, and P Nurden
January 1985, Wiener klinische Wochenschrift,
A T Nurden, and P Nurden
July 1995, Thrombosis and haemostasis,
A T Nurden, and P Nurden
September 1993, Bailliere's clinical haematology,
A T Nurden, and P Nurden
August 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A T Nurden, and P Nurden
February 1984, Pharmaceutisch weekblad. Scientific edition,
Copied contents to your clipboard!