Calcium-mediated mechanisms of ischemic injury and protection. 1994

P Morley, and M J Hogan, and A M Hakim
Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada.

Our understanding of calcium's role in cerebral ischemia continues to evolve from the initial recognition that it may be harmful to the ischemic cell. A multitude of experiments have supported the hypothesis that excessive influx of calcium into the cell under ischemic conditions is a major mechanism of cell injury and death. Pharmacological intervention to restore cellular calcium homeostasis is protective in many models of cell anoxia. Principle routes of calcium entry are the voltage-sensitive (VSCC) and N-methyl-D-aspartate linked receptor operated (ROCC) calcium channels. Regional variations in channel densities have been described and it is now known that these classes of channels are located in different regions of the neurons. Activation of both channel types has been identified in in vivo models of cerebral ischemia. Although the ROCC is predominant in number, the VSCC appears to activate at higher cerebral blood flow values suggesting that it is an earlier conduit for calcium than the glutamate-driven ROCC. Intracellular calcium is well recognized as a second messenger system and there is increasing appreciation that it induces immediate early genes (IEG). Since IEGs function as transcriptional regulating factors, the differential expression of specific target genes may be of importance for determining death or survival of the ischemic tissue.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002534 Hypoxia, Brain A reduction in brain oxygen supply due to ANOXEMIA (a reduced amount of oxygen being carried in the blood by HEMOGLOBIN), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to BRAIN DEATH or a PERSISTENT VEGETATIVE STATE. Histologically, this condition is characterized by neuronal loss which is most prominent in the HIPPOCAMPUS; GLOBUS PALLIDUS; CEREBELLUM; and inferior olives. Anoxia, Brain,Anoxic Encephalopathy,Brain Hypoxia,Cerebral Anoxia,Encephalopathy, Hypoxic,Hypoxic Encephalopathy,Anoxia, Cerebral,Anoxic Brain Damage,Brain Anoxia,Cerebral Hypoxia,Hypoxia, Cerebral,Hypoxic Brain Damage,Anoxic Encephalopathies,Brain Damage, Anoxic,Brain Damage, Hypoxic,Damage, Anoxic Brain,Damage, Hypoxic Brain,Encephalopathies, Anoxic,Encephalopathies, Hypoxic,Encephalopathy, Anoxic,Hypoxic Encephalopathies
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

P Morley, and M J Hogan, and A M Hakim
April 2002, American journal of physiology. Gastrointestinal and liver physiology,
P Morley, and M J Hogan, and A M Hakim
June 1986, The New England journal of medicine,
P Morley, and M J Hogan, and A M Hakim
January 1991, Trends in cardiovascular medicine,
P Morley, and M J Hogan, and A M Hakim
January 2004, Experimental and clinical cardiology,
P Morley, and M J Hogan, and A M Hakim
August 1999, General pharmacology,
P Morley, and M J Hogan, and A M Hakim
January 2011, Journal of neuroscience research,
P Morley, and M J Hogan, and A M Hakim
November 1996, The American journal of physiology,
Copied contents to your clipboard!