Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. 1994

J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
Jackson Laboratory, Bar Harbor, Maine 04609.

This paper focuses on the relationship between the developmental programs that regulate nuclear and cytoplasmic maturation of mouse oocytes. As oocytes near completion of their growth phase, they become competent to resume meiosis when isolated from the small antral follicles and cultured, but the progression of meiosis in many of these oocytes stops at metaphase I (MI). With further growth and development at the germinal vesicle (GV) stage, however, these oocytes become competent to complete nuclear maturation and progress to metaphase II (MII). In this study, about 44% of the oocytes were arrested at MI after isolation from the small antral follicles of 18-day-old mice and culture for 16 to 17 hr. Upon insemination, these MI-arrested oocytes produced the first polar body, formed pronuclei, cleaved, and developed to the blastocyst stage. Seventy five percent of these blastocysts were triploid, the remainder were diploid. Treatment of MI-arrested oocytes with calcium ionophore resulted in the completion of the first meiotic division and parthenogenetic activation. Moreover, while the pattern of proteins synthesized in MI-arrested oocytes was quite different from that of normal MI oocytes as determined by [35S]methionine labeling and two-dimensional gel electrophoresis, it was similar to that of MII-arrested oocytes. It was therefore concluded that some critical aspects of cytoplasmic maturation can occur in oocytes whose nuclear maturation is arrested at MI. In addition, triggers that promote entry of MII-arrested oocytes into anaphase II are sufficient to drive MI-arrested oocytes into anaphase I and to produce the first polar body when the triggers are generated in mature cytoplasm. The developmental capacity of MII oocytes that matured in vitro after isolation from 18- or 26-day-old mice were compared. The frequency of fertilization and cleavage to the 2-cell stage was equal in both groups. In surprising contrast, the ability to complete the 2-cell stage to blastocyst transition occurred much more frequently when the oocytes were from the 26- than the 18-day-old mice (82 and 27%, respectively). Thus, even though both groups of oocytes had completed nuclear maturation by progressing to MII, oocytes from the smaller follicles of the younger mice were deficient in maternal factors essential for development of embryos beyond the 2-cell stage. Further differentiation of these GV-stage oocytes of small antral follicles is therefore required to produce eggs competent of completing preimplantation development.

UI MeSH Term Description Entries
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011003 Ploidies The degree of replication of the chromosome set in the karyotype. Ploidy
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
May 1977, Research in reproduction,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
December 1977, Experimental cell research,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
May 2019, Scientific reports,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
November 1999, Biology of reproduction,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
October 1992, Developmental biology,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
February 2009, Reproduction (Cambridge, England),
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
August 2014, Reproduction, fertility, and development,
J J Eppig, and R M Schultz, and M O'Brien, and F Chesnel
June 1971, The Journal of experimental zoology,
Copied contents to your clipboard!