Ultrastructural studies of the primate lateral geniculate nucleus: morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus. 1994

S Feig, and J K Harting
Department of Anatomy, University of Wisconsin, Madison 53706.

The electron microscopic autoradiographic tracing method has been used to examine the morphology and postsynaptic relationships of five projections (retina, cortical area 17, superior colliculus (tectal), parabigeminal nucleus, and pretectum) to the dorsal lateral geniculate nucleus of the greater bush baby Galago crassicaudatus. Retinal terminals have been examined in the contralaterally innervated layer of each of the three matched pairs [parvi- (X-cell), magno- (Y-cell), and koniocellular (small, W-cell)] of geniculate layers. These terminals are large and contain pale mitochondria and round vesicles (RLPs). RLPs are presynaptic to juxtasomatic regions of parvi- and magnocellular neurons. In contrast, RLPs innervate more distal regions of koniocellular neurons. Labeled cortical, tectal, and parabigeminal terminals are relatively small and contain round vesicles and dark mitochondria. Cortical terminals in each of the three representative layers are presynaptic to small diameter dendrites. No convergence of cortical and retinal terminals has been seen in any layer. Labeled tectal and parabigeminal terminals are found primarily in the koniocellular layers, but the latter are also seen in all other layers. Tectal and parabigeminal terminals have been observed converging with retinal terminals on dendrites of some koniocellular neurons. Labeled pretectogeniculate terminals contain densely packed pleomorphic vesicles, dark mitochondria, and a dark cytoplasmic matrix. These terminals, which are present in each of the representative layers, are presynaptic to conventional dendrites and profiles containing loosely dispersed pleomorphic vesicles and a pale cytoplasmic matrix.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003336 Tectum Mesencephali The dorsal portion or roof of the midbrain which is composed of two pairs of bumps, the INFERIOR COLLICULI and the SUPERIOR COLLICULI. These four colliculi are also called the quadrigeminal bodies (TECTUM MESENCEPHALI). They are centers for sensorimotor integration. Corpora Quadrigemina,Lamina Quadrigemina,Quadrigeminal Plate,Tectal Plate,Commissure of Inferior Colliculus,Commissure of Superior Colliculus,Colliculus Commissure, Inferior,Colliculus Commissure, Superior,Inferior Colliculus Commissure,Inferior Colliculus Commissures,Mesencephalus, Tectum,Plate, Quadrigeminal,Plate, Tectal,Quadrigeminal Plates,Superior Colliculus Commissure,Superior Colliculus Commissures,Tectal Plates,Tectum Mesencephalus
D005701 Galago A genus of the family Lorisidae having four species which inhabit the forests and bush regions of Africa south of the Sahara and some nearby islands. The four species are G. alleni, G. crassicaudatus, G. demidovii, and G. senegalensis. There is another genus, Euoticus, containing two species which some authors have included in the Galago genus. Bush Babies,Galagos,Babies, Bush,Baby, Bush,Bush Baby
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

S Feig, and J K Harting
February 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Feig, and J K Harting
November 2000, Experimental brain research,
S Feig, and J K Harting
January 2012, The Journal of comparative neurology,
Copied contents to your clipboard!