The interaction of metal ions with synthetic DNA: induction of conformational and structural transitions. 1994

F E Rossetto, and E Nieboer
Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.

The propensity of a large number of metal ions to induce cooperative conformational or structural transitions in double-stranded poly d(G-C) was assessed by UV and CD spectrometry. This ability was seen to be an intrinsic property of most metal ions. The observed (metal ion)/(polydeoxynucleotide) mole ratio calculated per G-C base pair and corresponding to the midpoints of the principal transition ranged from 0.3 (Ag(II) to 100 (Al(III)). A strong correlation was seen [y = -1.01(log x) + 3.26, r = 0.95, n = 20] between the (metal ion)/(poly d(G-C)) mole ratio required for the transition midpoint (x) and a covalent index to complex stability (y) of the metal ions. This relationship was independent of the types of transitions observed (monophasic or biphasic) or of specific conformations (e.g., B, Z, psi). The y index measures the ability of metal ions to bind to nitrogen and/or sulphur donor atoms in ligands compared to oxygen centers; equilibrium analysis indicates that the mole-ratio x decreases with increasing affinity of metal ions for poly d(G-C). Thus the observed relationship suggests that base-nitrogen binding facilitates the induced transitions. In general, metal ions designated as Class B or nitrogen/sulphur seeking (Ag(I), Hg(II), and Ru(III)) induced monophasic transitions, whereas Class A or oxygen seeking ions (La(III), Ce(III), Tb(III), Dy(III)) induced biphasic transitions. Transitions generated by ions of more ambivalent ligand preference (Borderline ions) were either monophasic (Mn(II), Fe(III), Cu(II), Cd(II), In(III), and Pb(II)) or biphasic (Cr(III), Co(II), Ni(II) and Zn(II)). Poorly defined transition-curve profiles were observed for Pt(II), Pd(II), and Al(III). Specific conformational assignments were made for some of the observed transitions. For a limited number of metal ions (Ni(II), Cu(II), Cd(II), Ag(I), Hg(II)), interaction with calf thymus DNA was similarly examined. In these instances, the susceptibility to DNase I digestion of both the DNA and polydeoxynucleotide complexes was assessed.

UI MeSH Term Description Entries
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011089 Polydeoxyribonucleotides A group of 13 or more deoxyribonucleotides in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Polydeoxyribonucleotide
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

F E Rossetto, and E Nieboer
April 2005, International journal of biological macromolecules,
F E Rossetto, and E Nieboer
January 1991, Molekuliarnaia biologiia,
F E Rossetto, and E Nieboer
April 1989, Biochemical and biophysical research communications,
F E Rossetto, and E Nieboer
January 1999, Molekuliarnaia biologiia,
F E Rossetto, and E Nieboer
January 1984, Molekuliarnaia biologiia,
F E Rossetto, and E Nieboer
October 2003, Journal of biomolecular structure & dynamics,
F E Rossetto, and E Nieboer
April 1993, Journal of biomolecular structure & dynamics,
F E Rossetto, and E Nieboer
January 1968, Biopolymers,
Copied contents to your clipboard!