The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. 1994

Y Oh, and J A Black, and S G Waxman
Department of Neurology, Yale University School of Medicine, New Haven, CT 06510.

Astrocytes from various regions of CNS have been shown to express voltage-activated Na+ currents. To date, three distinct subtypes (I, II and III) of Na+ channels have been cloned from rat brain. We have applied a combined technique of reverse transcription and polymerase chain reaction (RT-PCR) to examine the expression of rat brain Na+ channels in rat astrocytes in vivo and in vitro. Five PCR primer sets were used to amplify coding or 3' non-coding regions of subtype I, II, and III Na+ channels. We were able to amplify all three of these rat brain Na+ channel subtypes from rat optic nerve, which does not have neuronal cell bodies but does contain astrocytes known to express voltage-sensitive Na+ channels. In studies on cultured spinal cord astrocytes, we were also able to amplify all three subtypes of rat brain Na+ channel mRNAs. In control experiments, RT-PCR was performed on RNAs prepared from several rat tissues, including brain, skeletal muscle, and liver. Rat brain was shown to express the three Na+ channel subtypes as expected. In rat skeletal muscle, subtype I and III Na+ channel mRNAs, but not subtype II, were amplified. In rat liver, Na+ channel messages were not detectable. The present study provides the first direct evidence that astrocytes in vivo and in vitro express rat brain voltage-sensitive Na+ channel mRNAs, which have been considered as mainly neuronal-type Na+ channel messages.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel

Related Publications

Y Oh, and J A Black, and S G Waxman
January 1993, Brain research. Molecular brain research,
Y Oh, and J A Black, and S G Waxman
July 1994, The Journal of comparative neurology,
Y Oh, and J A Black, and S G Waxman
January 1986, Annals of the New York Academy of Sciences,
Y Oh, and J A Black, and S G Waxman
March 2015, The Journal of physiology,
Y Oh, and J A Black, and S G Waxman
January 2007, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Y Oh, and J A Black, and S G Waxman
November 1981, The Journal of biological chemistry,
Y Oh, and J A Black, and S G Waxman
January 1983, Cold Spring Harbor symposia on quantitative biology,
Y Oh, and J A Black, and S G Waxman
March 2003, Glia,
Y Oh, and J A Black, and S G Waxman
March 2002, Brain research,
Copied contents to your clipboard!