Inactivation-resistant channels underlying the persistent sodium current in rat ventricular myocytes. 1994

Y K Ju, and D A Saint, and P W Gage
John Curtin School of Medical Research, Australian National University, Canberra.

Single-channel sodium currents that could be blocked with TTX were elicited by depolarizing voltage pulses in either cell-attached or inside-out patches from rat ventricular myocytes. A transient burst of channels was followed by late-opening (persistent) channels with low open probability. Conditioning depolarizing pre-pulses that inactivated transient channels and 'chattering' late-opening channels had no effect on persistent channels. The open probability of persistent channels reached a maximum at more negative potentials than transient channels. Between -70 mV and -40 mV, the average open time of persistent channels increased, whereas the average open time of transient channels did not change significantly, so the open times of the two channels diverged as the potential became more positive. The conductance of transient and persistent channels was similar, and the conductance of both kinds of channel increased at more depolarized potentials.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Y K Ju, and D A Saint, and P W Gage
April 2007, Sheng li xue bao : [Acta physiologica Sinica],
Y K Ju, and D A Saint, and P W Gage
August 2009, European journal of pharmacology,
Y K Ju, and D A Saint, and P W Gage
July 2005, Acta pharmacologica Sinica,
Y K Ju, and D A Saint, and P W Gage
August 2010, Cardiovascular research,
Y K Ju, and D A Saint, and P W Gage
October 1993, The American journal of physiology,
Y K Ju, and D A Saint, and P W Gage
August 1999, The Journal of physiology,
Y K Ju, and D A Saint, and P W Gage
June 2015, Pflugers Archiv : European journal of physiology,
Y K Ju, and D A Saint, and P W Gage
June 2007, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!