Single-site mutations in the C-terminal domain of bacteriophage lambda cI repressor alter cooperative interactions between dimers adjacently bound to OR. 1994

D S Burz, and G K Ackers
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.

Wild-type cI repressor dimers bind with 2.5-3 kcal/mol of cooperative free energy to the tripartite right operator region (OR) of bacteriophage lambda [Johnson, A. D., et al. (1981) Nature 294, 217-223; Brenowitz, M., et al. (1986) Methods Enzymol. 130, 132-181]. Quantitative modeling has suggested that cooperativity is required for maintenance of the lysogenic state and for the efficient switch from lysogenic to lytic growth [Ackers, G. K., et al. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1129-1133; Shea, M. A., & Ackers, G. K. (1985) J. Mol. Biol. 181, 211-230]. Cooperativity and self-association are thought to involve protein-protein contacts between C-terminal domains of the repressor molecule [Pabo, C. O., et al. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 1608-1612]. To address the importance of the C-terminal domain in mediating the cooperativity exhibited by lambda cI repressor, a number of single-site mutant candidates were screened for possible deficiencies in cooperative interactions [Beckett, D., et al. (1993) Biochemistry 32, 9073-9079; Burz, D. S., et al. (1994) Biochemistry 33, 8399-8405]. Since repressor dimerization and binding to operator sites are coupled processes, elucidation of the energetic basis of regulation in this system requires that the equilibrium dimerization constants and the intrinsic and cooperative free energies of binding be measured. In this work we evaluate the interaction of eight mutant repressors with OR DNA: Gly147-->Asp (GD147), Pro158-->Thr (PT158), Glu188-->Lys (EK188), Lys192-->Asn (KN192), Tyr210-->His (YH210), Ser228-->Arg (SR228), and Ser228-->Asn (SN228), each with an amino acid substitution in the C-terminal domain, and Glu102-->Lys (EK102) where the substitution lies in the "linker sequence" between domains. Self-assembly properties of six of these mutant repressors are presented in the preceding paper (Burz et al., 1994). In this work, the binding of mutant cI repressors to OR was examined using quantitative DNAse I footprinting. This technique monitors individual site occupancy concurrent with binding at the other sites within a multisite complex.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

D S Burz, and G K Ackers
January 2009, Journal of molecular biology,
D S Burz, and G K Ackers
December 2001, Journal of molecular biology,
Copied contents to your clipboard!