Role of hydrophobic interactions in the fusion activity of influenza and Sendai viruses towards model membranes. 1994

J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
Department of Zoology, University of Coimbra, Portugal.

We have studied the role of hydrophobic interactions in the fusion activity of two lipid enveloped viruses, influenza and Sendai. Using the fluorescent probe ANS (1-aminonaphtalene-8-sulfonate) we have shown that low-pH-dependent influenza virus activation involves a marked increase in the viral envelope hydrophobicity. The effect of dehydrating agents on the fusion activity of both viruses towards model lipid membranes was studied using a fluorescence dequenching assay. Dehydrating agents such as dimethylsulfoxide and dimethylsulfone greatly enhanced the initial rate of the fusion process, the effect of dimethylsulfone doubling that of dimethylsulfoxide. The effect of poly(ethylene glycol) on the fusion process was found to be dependent on the polymer concentration and molecular weight. In general, similar observations were made for both viruses. These results stress the importance of dehydration and hydrophobic interactions in the fusion activity of influenza and Sendai viruses, and show that these factors may be generally involved in membrane fusion events mediated by many other lipid enveloped viruses.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D009282 Naphthalenesulfonates A class of organic compounds that contains a naphthalene moiety linked to a sulfonic acid salt or ester.
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013450 Sulfones Sulfone

Related Publications

J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
August 1974, Journal of molecular biology,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
May 2018, Journal of physics. Condensed matter : an Institute of Physics journal,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
June 2016, Acta virologica,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
June 1991, Virology,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
July 1990, The Journal of biological chemistry,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
May 1993, Experimental cell research,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
June 2018, Biochimica et biophysica acta. Biomembranes,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
January 1997, Zeitschrift fur Naturforschung. C, Journal of biosciences,
J Ramalho-Santos, and R Negrão, and M da Conceição, and P de Lima
April 1989, The Journal of biological chemistry,
Copied contents to your clipboard!