The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. 1994

R J Frysztak, and E J Neafsey
Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, IL 60153.

The effect of ventral medial frontal cortex (MFC) lesions on heart rate and blood pressure during conditioned emotional responses (CER) was investigated. Male Sprague-Dawley rats were divided into two groups: MFC-lesioned rats (n = 11) sustained bilateral lesions of the infralimbic and ventral prelimbic regions of the MFC via microinjection of the neurotoxin N-methyl-D-aspartate; Controls (n = 13) received sterile saline. Following a 2-week recovery period, all animals were trained; one of two tones served as the conditioned stimulus (CS) and a 2 mA footshock served as the unconditioned stimulus (US). The CS+ tone was consistently paired with the US, while the CS- tone was randomly paired with the US. Heart rate and blood pressure were recorded during CS+ and CS- presentations before and after administration of the following pharmacological agents: atropine, atenolol, and atropine + atenolol. All animals responded to the CS+ with increased BP compared to baseline; the increase was not significantly different between groups. Controls responded to the CS+ with increased HR, while MFC-lesioned animals displayed a bimodal HR response which was not significantly different from baseline, but was significantly different from Controls. Pharmacological blockade of the HR response revealed coactivation of the sympathetic and parasympathetic nervous systems during the CS+, with a significant decrease (52%) in the sympathetic tachycardia component of the CS+ HR response in MFC-lesioned rats as compared to Controls; the parasympathetic bradycardia component was not altered by MFC lesions. In all cases, CS- responses were smaller than the CS+ responses. Pharmacological analysis revealed that the CS- HR response was mediated by the sympathetic component only, which was also significantly reduced in MFC-lesioned animals as compared to Controls. This significant reduction in the sympathetically mediated HR component of both the reinforced CER (CS+) and the unreinforced CER (CS-) following ventral MFC lesions implies that the MFC is necessary for complete sympathetic activation of cardiovascular responses to both severely and mildly stressful stimuli. The role of the MFC in emotion is also discussed.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003213 Conditioning, Psychological Simple form of learning involving the formation, strengthening, or weakening of an association between a stimulus and a response. Conditioning, Psychology,Psychological Conditioning,Social Learning Theory,Social Learning Theories,Theory, Social Learning
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D004644 Emotions Those affective states which can be experienced and have arousing and motivational properties. Feelings,Regret,Emotion,Feeling,Regrets

Related Publications

R J Frysztak, and E J Neafsey
March 1998, Behavioural brain research,
R J Frysztak, and E J Neafsey
September 1992, Behavioural brain research,
R J Frysztak, and E J Neafsey
November 1976, Physiology & behavior,
R J Frysztak, and E J Neafsey
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Frysztak, and E J Neafsey
January 1971, European journal of pharmacology,
R J Frysztak, and E J Neafsey
April 2024, Progress in neuro-psychopharmacology & biological psychiatry,
R J Frysztak, and E J Neafsey
January 1986, Experimental brain research,
R J Frysztak, and E J Neafsey
January 1987, Brain research bulletin,
R J Frysztak, and E J Neafsey
January 1987, Physiology & behavior,
Copied contents to your clipboard!