Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin-II in adrenal glomerulosa cells. 1994

M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
Division of Endocrinology, University Hospital, Geneva, Switzerland.

Angiotensin-II (AngII)-induced Ca2+ influx in adrenal glomerulosa cells, a signal necessary for the stimulation of steroidogenesis by the hormone, is believed to involve two distinct mechanisms: 1) opening of voltage-operated Ca2+ channels, and 2) activation of a capacitative Ca2+ entry pathway that is dependent on calcium release from intracellular stores. Nicardipine, a dihydropyridine calcium antagonist, has been used to investigate the role of these Ca2+ entry mechanisms in the steroidogenic response to AngII. As demonstrated with the patch-clamp technique, micromolar concentrations of nicardipine completely blocked voltage-operated Ca2+ channel activity of both T- and L-types. This agent similarly inhibited the rise of cytosolic free calcium concentration induced by potassium, but did not significantly affect the response to thapsigargin, an activator of the capacitative pathway. Nicardipine reduced by only 22% the calcium influx stimulated by AngII, and the nicardipine-insensitive part of this response was abolished after exhausting the intracellular Ca2+ stores with thapsigargin. Similarly, aldosterone secretion induced by AngII was only partially inhibited (40%) by nicardipine at concentrations that completely abolished the steroidogenic response to potassium. Thapsigargin by itself was able to stimulate aldosterone production, an action highly potentiated by physiological concentrations of extracellular potassium. These data strongly suggest that the major part of the calcium influx response to AngII, leading to aldosterone formation, involves a capacitative calcium entry pathway activated by the release of calcium from intracellular stores. This mechanism of calcium influx could be responsible for some features of aldosterone response to the hormone, such as its poor sensitivity to dihydropyridines or its potentiation by potassium.

UI MeSH Term Description Entries
D009529 Nicardipine A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. Antagonil,Cardene,Cardene I.V.,Cardene SR,Dagan,Flusemide,Lecibral,Lincil,Loxen,Lucenfal,Nicardipine Hydrochloride,Nicardipine LA,Nicardipino Ratiopharm,Nicardipino Seid,Perdipine,Ridene,Vasonase,Y-93,Hydrochloride, Nicardipine,LA, Nicardipine,Y 93,Y93
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
November 1994, The American journal of physiology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
February 1998, The Biochemical journal,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
July 1992, Endocrinology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
March 1985, Endocrinology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
December 1996, Endocrinology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
October 1999, The Journal of endocrinology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
July 2009, The Journal of endocrinology,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
July 2002, The Journal of biological chemistry,
M M Burnay, and C P Python, and M B Vallotton, and A M Capponi, and M F Rossier
June 1990, Molecular and cellular biochemistry,
Copied contents to your clipboard!