The effect of denervation on myosin isoform synthesis in rabbit slow-type and fast-type muscles during terminal differentiation. Denervation induces differentiation into slow-type muscles. 1994

A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
Laboratoire de Biologie Physicochimique, Unité de Recherche Associée au Centre National de la Recherche Scientifique 1131, Université Paris-Sud, Orsay, France.

The soleus and gastrocnemius medialis of eight-day-old rabbits were denervated and the effects were examined after fifty-two days by biochemical, cytochemical and mechanical methods. The contralateral soleus exhibited the properties of slow-type muscle, namely a predominance of slow-type myosin isoforms and slow-type oxidative fibers, slow twitch and low maximal velocity for shortening. The contralateral gastrocnemius exhibited the properties of fast-type muscle, namely a predominance of fast-type myosin isoforms and fast-type non-oxidative fibers, fast twitch and high maximal velocity of shortening. Denervation of muscles caused the differentiation of the two muscles towards slow-type muscles. Both denervated soleus and gastrocnemius muscles exhibited a predominance of slow-type myosins (either the normal type, made up of slow heavy and light chains, or the hybrid type, made up of slow heavy and regulatory light chains and fast essential light chains), a predominance of slow-type fibers, and slow mechanical properties. Thus, innervation in rabbit appears to be a determining factor for differentiation into fast-type muscle, but it is not necessary for differentiation into slow-type muscle. This conclusion contradicts the findings of previous studies in rat and thus raises new questions concerning the role of nerves in controlling the expression of myosin isoforms and the differentiation of muscle fibers.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
January 1972, Physiologia Bohemoslovaca,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
January 1965, Archives of biochemistry and biophysics,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
October 1989, Developmental biology,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
December 1971, Experientia,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
April 1992, Acta physiologica Scandinavica,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
July 1987, Experimental neurology,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
January 1970, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
November 1978, Molecular pharmacology,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
January 1988, Reproduction, nutrition, developpement,
A d'Albis, and F Goubel, and R Couteaux, and C Janmot, and J C Mira
January 1970, Experimental neurology,
Copied contents to your clipboard!