Isolation and characterization of a cDNA clone encoding the pokeweed antiviral protein II from Phytolacca americana and its expression in E. coli. 1994

J L Poyet, and J Radom, and A Hoeveler
Laboratoire de Biochimie et Biologie Moléculaire, UFR Sciences et Techniques, Besançon, France.

Three distinct ribosome-inactivating proteins (RIPs) were isolated from pokeweed (Phytolacca americana). We identified and sequenced for the first time a complete cDNA encoding the pokeweed antiviral protein II (PAP II), which is expressed in the late summer leaves of pokeweed. The cDNA of PAP II consists of 1,187 nucleotides and encodes a mature protein of 285 amino acids. Its predicted amino acid sequence is only 33% similar to PAP and PAP-S. The NH2 terminal extrapeptide (25 amino acid residues) was similar but not identical to that of PAP's extrapeptide. The cDNA of PAP II was expressed in E. coli. The growth of the transformants was strongly inhibited after induction of the gene. Furthermore, PAP II, which was produced in E. coli, inhibited protein synthesis in a rabbit reticulocyte translation system. Thus, recombinant PAP II would appear to be as functional as native PAP in inhibiting protein synthesis in both prokaryotes and eukaryotes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J L Poyet, and J Radom, and A Hoeveler
October 1991, Plant molecular biology,
J L Poyet, and J Radom, and A Hoeveler
January 2004, Acta virologica,
J L Poyet, and J Radom, and A Hoeveler
December 1992, Plant molecular biology,
J L Poyet, and J Radom, and A Hoeveler
March 1993, FEBS letters,
J L Poyet, and J Radom, and A Hoeveler
December 1990, Agricultural and biological chemistry,
J L Poyet, and J Radom, and A Hoeveler
July 2006, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J L Poyet, and J Radom, and A Hoeveler
April 1995, Bioscience, biotechnology, and biochemistry,
J L Poyet, and J Radom, and A Hoeveler
December 1969, Phytopathology,
Copied contents to your clipboard!