Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. 1994

J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
Vollum Institute for Advanced Biomedical Research, OHSU, Portland, OR 97201.

A novel G protein-coupled receptor was cloned by PCR and homology screening. Its deduced amino acid sequence is 47% identical overall to the mu, delta and kappa opioid receptors and 64% identical in the putative transmembrane domains. When transiently expressed in COS-7 cells this receptor did not bind any of the typical mu, delta or kappa opioid receptor ligands with high affinity. In situ hybridization analysis revealed that LC132 mRNA is highly expressed in several rat brain areas, including the cerebral cortex, thalamus, subfornical organ, habenula, hypothalamus, central gray, dorsal raphe, locus coeruleus and the dorsal horn of the spinal cord. Based on this distribution and its high homology with the mu, delta and kappa opioid receptors, it is proposed that LC132 is a new member of the opioid receptor family that is involved in analgesia and the perception of pain.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
November 1993, The Biochemical journal,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
June 1994, FEBS letters,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
April 1991, Journal of neuroendocrinology,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
April 1987, Neuroscience letters,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
October 1995, Biochemical and biophysical research communications,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
November 1993, The Biochemical journal,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
January 2002, Proceedings of the Western Pharmacology Society,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
December 1990, Brain research,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
November 1990, The Journal of pharmacology and experimental therapeutics,
J R Bunzow, and C Saez, and M Mortrud, and C Bouvier, and J T Williams, and M Low, and D K Grandy
September 2009, British journal of pharmacology,
Copied contents to your clipboard!