P element mediated germ line transformation of Drosophila melanogaster with the Tc1 transposable DNA element from Caenorhabditis elegans. 1994

A A Szekely, and R C Woodruff, and R Mahendran
Department of Biological Sciences, Bowling Green State University, OH 43403.

Questions relating to the origin and regulation of mobile genetic elements are currently of considerable interest. Since it is now possible to address more precisely issues concerning the entry, dispersion, and regulation of elements within a virgin genome, one approach that may afford a better understanding of transposable elements in general could be provided by interspecific DNA transformation. Therefore, the Tc1 transposable DNA element from Caenorhabditis elegans was chosen as a proposed invading element of the Drosophila melanogaster genome. The basis for this selection resided in the inherent structural and functional similarities, as well as sequence identities, between the Caenorhabditis element and elements innate to Drosophila (e.g., P, HB1, and Uhu). Initial investigations were carried out to define a clone carrying an intact Tc1 element. This Tc1 element was inserted into a P transposon vector and two P-Tc1-ry+ constructs, differing only in insert orientation, were identified. P element mediated germ line transfer was then used to generate a transformant that was genetically and molecularly identified as containing a single, structurally intact Tc1 element at cytological location 64C4-5 on the third chromosome. The single P[(Tc1,ry+)]SAS-B insertion was thereafter mobilized by using a P[ry+ delta 2-3] element as a transposase source, and the genetic and molecular data suggested that the insertion had been successfully reintegrated to a variety of genomic locations. On the basis of genetic and molecular analyses, the Tc1 element in the P[Tc1,ry+)] transformed stock is not highly unstable in germ line and somatic tissues.

UI MeSH Term Description Entries
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A A Szekely, and R C Woodruff, and R Mahendran
January 1993, Methods in molecular biology (Clifton, N.J.),
A A Szekely, and R C Woodruff, and R Mahendran
July 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
A A Szekely, and R C Woodruff, and R Mahendran
February 1988, Molecular and cellular biology,
A A Szekely, and R C Woodruff, and R Mahendran
May 1986, Molecular and cellular biology,
A A Szekely, and R C Woodruff, and R Mahendran
February 1994, Mutation research,
A A Szekely, and R C Woodruff, and R Mahendran
October 1995, Proceedings of the National Academy of Sciences of the United States of America,
A A Szekely, and R C Woodruff, and R Mahendran
May 2001, Molecular genetics and genomics : MGG,
A A Szekely, and R C Woodruff, and R Mahendran
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
A A Szekely, and R C Woodruff, and R Mahendran
January 1984, Nature,
A A Szekely, and R C Woodruff, and R Mahendran
June 1983, Nucleic acids research,
Copied contents to your clipboard!