A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. 1994

J G Moffat, and W P Tate
Department of Biochemistry, University of Otago, Dunedin, New Zealand.

The structural and functional organization of Escherichia coli polypeptide chain release factors 1 and 2 (RF-1 and RF-2) was investigated by limited proteolysis with trypsin and chymotrypsin. A protease-sensitive site was found in a similar position in both factors at the beginning of a highly conserved region in the C-terminal part of the proteins. Chymotrypsin cleavage of RF-2 yielded a nicked form with the fragments associated. This nicked factor lost in vitro peptidyl-tRNA hydrolysis activity (a peptidyltransferase function) but had enhanced in vitro codon-ribosome binding activity (a decoding site function). It inhibited codon-dependent f[3H]Met-tRNA hydrolysis activity of intact RF-1 and RF-2, presumably as a result of an increased affinity for ribosomes. These data are consistent with a model whereby the release factor acts like a tRNA analog spanning the decoding and peptidyltransferase centers on the ribosome. The proteolytic sensitivity of the RFs most likely reflects an exposed surface loop. We propose that this loop interacts with the ribosomal peptidyltransferase site and that the stabilization of factor:ribosome binding upon cleavage could be explained by conformational coupling between domains on the factor for codon-ribosome binding at the decoding site and interaction with peptidyltransferase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D010454 Peptide Termination Factors Proteins that are involved in the peptide chain termination reaction (PEPTIDE CHAIN TERMINATION, TRANSLATIONAL) on RIBOSOMES. They include codon-specific class-I release factors, which recognize stop signals (TERMINATOR CODON) in the MESSENGER RNA; and codon-nonspecific class-II release factors. Termination Release Factor,Factor, Termination Release,Factors, Peptide Termination,Release Factor, Termination,Termination Factors, Peptide
D010458 Peptidyl Transferases Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases. Peptidyl Transferase,Peptidyl Translocase,Peptidyl Translocases,Peptidyltransferase,Transpeptidase,Transpeptidases,Peptidyltransferases,Transferase, Peptidyl,Transferases, Peptidyl,Translocase, Peptidyl,Translocases, Peptidyl
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

J G Moffat, and W P Tate
June 2025, Science (New York, N.Y.),
J G Moffat, and W P Tate
June 2004, The Journal of biological chemistry,
J G Moffat, and W P Tate
August 1996, Journal of molecular biology,
Copied contents to your clipboard!