Role of zinc in cell division of Euglena gracilis. 1975

K H Falchuk, and D W Fawcett, and B L Vallee

Euglena gracilis is a suitable model system to investigate the role of zinc in the process of cell division. In zinc-deficient organisms there is a characteristic arrest of cellular proliferation, the DNA content of the cells doubles, whereas RNA and protein contents decrease. The present investigations include the growth characteristics, changes in cellular morphology at various stages in the growth cycle, quantitation of zinc uptake and incorporation of tritium-labelled precursors into RNA by organisms grown in zinc sufficient (Zn+), (Zn2+ content 1 times 10-minus 5 M) or zinc-deficient (Zn minus), (Zn2+ content 1 times 10-7 M) medium. Cell division ceases on depletion of zinc from the medium. There are 20-fold less cells in (Zn minus) medium than in control cultures. The size of (Zn+) cells decreases during log phase due to a reduction in the paramylon content of the cytoplasm. The size of (Zn minus) cells, however, increases, due to an accumulation of paramylon. This results in a 13-fold increment in dry weight compared to control. Other cytoplasmic organelles, including Golgi bodies, mitochondria, etc. are normal. Nuclear morphology also is unchanged. There is a reduction in the rate of incorporation of labelled precursors into RNA by (Zn minus) cells. The DNA content of (Zn minus) E. gracilis, the absence of morphologic evidence to indicate that cell division has followed the doubling of the DNA, and the arrest in proliferation suggests that a critical zinc-dependent step in the cell cycle, localized to G2, is blocked in zinc deficiency.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005056 Euglena gracilis A species of fresh-water, flagellated EUKARYOTES in the phylum EUGLENIDA. Euglena gracili,gracilis, Euglena
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013054 Spectrophotometry, Atomic Spectrophotometric techniques by which the absorption or emmision spectra of radiation from atoms are produced and analyzed. Spectrophotometry, Atomic Absorption,AA Spectrophotometry,AE Spectrophotometry,Atomic Absorption Spectrophotometry,Atomic Emission Spectrophotometry,Atomic Spectrophotometry,Inductively Coupled Plasma Atomic Emission Spectrophotometry,Inductively Coupled Plasma Atomic Emission Spectroscopy,Spectrophotometry, Atomic Emission,AA Spectrophotometries,AE Spectrophotometries,Absorption Spectrophotometry, Atomic,Emission Spectrophotometry, Atomic,Spectrophotometries, AA,Spectrophotometries, AE,Spectrophotometry, AA,Spectrophotometry, AE
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine

Related Publications

K H Falchuk, and D W Fawcett, and B L Vallee
June 1978, Journal of cell science,
K H Falchuk, and D W Fawcett, and B L Vallee
November 1964, Experimental cell research,
K H Falchuk, and D W Fawcett, and B L Vallee
February 1993, Biochemistry,
K H Falchuk, and D W Fawcett, and B L Vallee
October 1974, Journal of cellular physiology,
K H Falchuk, and D W Fawcett, and B L Vallee
July 1981, Biochimica et biophysica acta,
K H Falchuk, and D W Fawcett, and B L Vallee
August 1978, Journal of cellular physiology,
K H Falchuk, and D W Fawcett, and B L Vallee
September 1971, Planta,
K H Falchuk, and D W Fawcett, and B L Vallee
January 1990, Progress in clinical and biological research,
K H Falchuk, and D W Fawcett, and B L Vallee
May 1969, The Journal of protozoology,
K H Falchuk, and D W Fawcett, and B L Vallee
September 2021, Plants (Basel, Switzerland),
Copied contents to your clipboard!