Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. 1994

L F Lin, and T J Zhang, and F Collins, and L G Armes
Synergen, Inc, Boulder, Colorado 80301.

The rat glial cell line B49 releases into its culture medium a potent neurotrophic factor that exhibits relative specificity for the dopaminergic neurons in dissociated cultures of rat embryonic midbrain. This factor is a heparin-binding, basic protein that is heterogeneously glycosylated and migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and on molecular sieve chromatography with an apparent mass of approximately 33-45 kDa. The factor behaves like a disulfide-bonded homodimer, whose biological activity is destroyed by reduction of disulfide bonds but not by SDS-PAGE or reversed-phase (RP)-HPLC. The apparent mass of the monomer is approximately 16 kDa after deglycosylation with N-Glycanase. This factor has been purified 34,000-fold to apparent homogeneity by a combination of heparin-affinity chromatography, molecular sieving chromatography, SDS-PAGE, and RP-HPLC. The purified rat protein promotes the survival, morphological differentiation, and high-affinity dopamine reuptake of dopaminergic neurons in midbrain cultures, without obvious effects on total neurons or glia and without increasing high-affinity GABA or serotonin reuptake. The purified protein exhibits an EC50 in midbrain cultures at approximately 40 pg/ml, or 1 pM, and has unique amino-terminal and internal amino acid sequences. The sequences provide a basis for cloning and expression of the gene for rat and human glial cell line-derived neurotrophic factor (GDNF), confirming that the protein purified as reported here is GDNF.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

L F Lin, and T J Zhang, and F Collins, and L G Armes
November 2007, International journal of pharmaceutics,
L F Lin, and T J Zhang, and F Collins, and L G Armes
February 2013, Annals of medicine,
L F Lin, and T J Zhang, and F Collins, and L G Armes
May 2000, Brain research bulletin,
L F Lin, and T J Zhang, and F Collins, and L G Armes
January 1999, Microscopy research and technique,
L F Lin, and T J Zhang, and F Collins, and L G Armes
December 2004, Experimental neurology,
L F Lin, and T J Zhang, and F Collins, and L G Armes
January 1998, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
L F Lin, and T J Zhang, and F Collins, and L G Armes
November 1999, Neuroscience letters,
L F Lin, and T J Zhang, and F Collins, and L G Armes
November 1999, Annals of the New York Academy of Sciences,
L F Lin, and T J Zhang, and F Collins, and L G Armes
April 2005, Neuroreport,
Copied contents to your clipboard!