A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. 1994
A contact analysis and a series of restrained molecular dynamics simulations were employed to derive a model of the complex between single-stranded DNA and the single-stranded DNA-binding protein encoded by gene V of the filamentous phage M13. The study is based on the recently elucidated solution structure of the Tyr41-->His mutant of the protein. Electron microscopy studies, indicating that the complex forms a flexible, left-handed helical coil with a diameter of 8 to 9 nm and an average pitch of 9 nm, were taken into consideration. The contact analysis served to determine the helix parameters that permit the energetically most favourable packing of protein molecules. Then a protein super-helix was built, into which two extended strands of DNA were modelled using restrained molecular dynamics. Specific constraints were included to ensure that the DNA would position itself into the binding groove of the protein. These constraints are based on recent NMR spin label experiments which offered a direct identification of the amino acids of the protein present in the DNA-binding domain. We present a model for the complex which is in full agreement with the existing reliable biophysical and biochemical data. A description of the protein-protein interface is given and the protein-DNA interaction is discussed in view of the derived model. In addition, we demonstrate that, on the basis of the available experimental data, and not imposing the left-handedness of the nucleoprotein complex, it is feasible to build also a plausible model for the complex which exhibits the opposite, i.e. right-handed, helical sense. This nucleoprotein structure features characteristics highly similar to those of the left-handed helix.