Transcription of a variant human U6 small nuclear RNA gene is controlled by a novel, internal RNA polymerase III promoter. 1994

J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905.

Promoter elements in the 5' flanking regions of vertebrate U6 RNA genes have been shown to be both necessary and sufficient for transcription by RNA polymerase III. We have recently isolated and characterized a variant human U6 gene (87U6) that can be transcribed by RNA polymerase III in vitro in the absence of any natural 5' or 3' flanking sequences. This gene contains 10 nucleotide differences from the previously characterized human U6 gene (wtU6) within the coding region but has no homology to wtU6 in the upstream promoter region. By constructing chimeras between these two genes, we have shown that mutation of as few as two nucleotides in the coding region of the human U6 RNA gene is sufficient to create an internal promoter that is functional in vitro. A T-to-C transition at position 57 and a single T deletion at position 52 produce an internal U6 promoter that is nearly as active in vitro as the external U6 polymerase III promoter utilized by wtU6. Neither of these residues is absolutely conserved during evolution, and both of these nucleotide changes occur within the previously noted A box homology. Deletion and linker scanning mutations within the coding region of this variant U6 gene suggest that, in addition to the central region including bp 52 and 57, sequences at the extreme 5' end of the gene are critical for efficient transcription. In contrast, flanking sequences have a minor effect on transcriptional efficiency. This arrangement is unique among internal RNA polymerase III promoters and may indicate unique regulation of this gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012320 RNA Polymerase III A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure where it transcribes DNA into RNA. It has specific requirements for cations and salt and has shown an intermediate sensitivity to alpha-amanitin in comparison to RNA polymerase I and II. DNA-Dependent RNA Polymerase III,RNA Polymerase C,DNA Dependent RNA Polymerase III,Polymerase C, RNA,Polymerase III, RNA
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
January 1987, The Journal of biological chemistry,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
July 1991, The EMBO journal,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
September 1995, Biochemical and biophysical research communications,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
October 1990, Nucleic acids research,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
January 1987, Nature,
J W Tichelaar, and B Knerer, and A Vrabel, and E D Wieben
August 1990, Genes & development,
Copied contents to your clipboard!