Biosynthesis of glycosylphosphatidylinositol-anchored human placental alkaline phosphatase: evidence for a phospholipase C-sensitive precursor and its post-attachment conversion into a phospholipase C-resistant form. 1994

Y W Wong, and M G Low
Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032.

Previous studies have shown that some cells (e.g. SKG3a) express human placental alkaline phosphatase (AP) in a form which can be released from the membrane by bacterial PtdIns-specific phospholipase C (PI-PLC) while others (e.g. HeLa) are relatively resistant to this enzyme. Chemical and enzymic degradation studies have suggested that the PI-PLC resistance of AP is due to inositol acylation of its glycosylphosphatidylinositol (GPI) anchor. In order to identify the biosynthetic origin of PI-PLC resistance we determined the PI-PLC sensitivity of AP in 35S-labelled cells (10 min pulse; 0-60 min chase) by Triton X-114 phase separation. At the beginning of the chase period, the majority of the AP synthesized was hydrophilic, indicating that it had not acquired a GPI anchor. The concentration of hydrophilic AP species decreased with a t1/2 of 30-60 min but was not processed to an endoglycosidase H-resistant species or secreted into the medium. In both SKG3a and HeLa cells all of the hydrophobic, GPI-anchored AP detectable at the beginning of the chase was PI-PLC sensitive. PI-PLC-resistant species of AP were only observed in HeLa cells and these only appeared after about 30 min. The delayed appearance of PI-PLC resistance was unexpected as previous studies have suggested that candidate GPI-anchor precursors are PI-PLC-resistant as a result of inositol acylation. This work reveals unanticipated complexities in the biosynthesis of AP and its GPI anchor.

UI MeSH Term Description Entries
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005260 Female Females
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

Y W Wong, and M G Low
June 1999, Archives of pharmacal research,
Y W Wong, and M G Low
October 1993, European journal of biochemistry,
Y W Wong, and M G Low
January 1984, Progress in clinical and biological research,
Y W Wong, and M G Low
March 1983, Biochemical and biophysical research communications,
Y W Wong, and M G Low
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!