Organization of inner ear endorgan projections in the goldfish, Carassius auratus. 1994

C A McCormick, and M R Braford
Department of Biology, Oberlin College, Ohio 44074.

Cytoarchitectural analysis of the octavolateralis area of the goldfish, Carassius auratus, reveals that as in other teleosts, five first-order octaval nuclei are present: the anterior octaval, magnocellular, descending, tangential, and posterior octaval nuclei. The descending nucleus appears to be anatomically specialized relative to that of the halecomorph Amia calva and many teleosts in that a large dorsomedial subpopulation of the nucleus lies medial to nucleus medialis, a first-order lateral line nucleus. In addition to this dorsomedial zone, the descending nucleus is made up of an intermediate and a ventral zone. Application of horseradish peroxidase (HRP) to individual inner ear endorgans reveals that the distribution of these afferents to the octaval nuclei is generally similar to that in another otophysan, Ictalurus punctatus [McCormick and Braford, 1993]. Nucleus magnocellularis receives a diffuse projection from all of the endorgans. The semicircular canals project heavily to the nucleus tangentialis, the entire ventral zone and portions of the intermediate zone of the descending nucleus, the ventral portion of the caudal anterior nucleus, and the bulk of the rostral anterior nucleus. The macula neglecta projects to the intermediate zone of the descending nucleus and to ventral locations within the dorsal half of the caudal anterior nucleus. The otolithic endorgans--the saccule, lagena, and utricle--project, in an overlapping manner, to the dorsal half of the caudal anterior nucleus and minimally to the rostral anterior nucleus. The inputs of the otolithic endorgans to the intermediate zone of the descending nucleus are more segregated, though a given region is sometimes supplied by more than one endorgan. The projections of the saccule tend to be concentrated more medially than those of the other two endorgans. The dorsomedial zone of the descending nucleus receives the majority of its primary input from the saccule, and a much smaller input from the lagena, over most of its rostrocaudal extent. At caudal-most levels of the dorsomedial zone, afferents from the three otolithic endorgans overlap.

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D010037 Otolithic Membrane A gelatinous membrane overlying the acoustic maculae of SACCULE AND UTRICLE. It contains minute crystalline particles (otoliths) of CALCIUM CARBONATE and protein on its outer surface. In response to head movement, the otoliths shift causing distortion of the vestibular hair cells which transduce nerve signals to the BRAIN for interpretation of equilibrium. Otoconia,Otoliths,Statoconia,Membrane, Otolithic,Membranes, Otolithic,Otoconias,Otolith,Otolithic Membranes,Statoconias
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D012444 Saccule and Utricle Two membranous sacs within the vestibular labyrinth of the INNER EAR. The saccule communicates with COCHLEAR DUCT through the ductus reuniens, and communicates with utricle through the utriculosaccular duct from which the ENDOLYMPHATIC DUCT arises. The utricle and saccule have sensory areas (acoustic maculae) which are innervated by the VESTIBULAR NERVE. Otolithic Organs,Utricle,Saccule,Organ, Otolithic,Otolithic Organ,Saccules,Utricle and Saccule,Utricles
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

C A McCormick, and M R Braford
April 1977, Brain research,
C A McCormick, and M R Braford
April 1979, The Journal of comparative neurology,
C A McCormick, and M R Braford
November 1988, Journal of morphology,
C A McCormick, and M R Braford
August 1974, The Journal of experimental biology,
C A McCormick, and M R Braford
January 2011, Frontiers in neuroanatomy,
C A McCormick, and M R Braford
June 2008, Journal of morphology,
C A McCormick, and M R Braford
September 1985, The Journal of comparative neurology,
C A McCormick, and M R Braford
March 1931, Science (New York, N.Y.),
C A McCormick, and M R Braford
January 1989, Brain, behavior and evolution,
Copied contents to your clipboard!