Differential control of band 3 lateral and rotational mobility in intact red cells. 1994

J D Corbett, and P Agre, and J Palek, and D E Golan
Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115.

Measurements of integral membrane protein lateral mobility and rotational mobility have been separately used to investigate dynamic protein--protein and protein-lipid interactions that underlie plasma membrane structure and function. In model bilayer membranes, the mobilities of reconstituted proteins depend on the size of the diffusing molecule and the viscosity of the lipid bilayer. There are no direct tests, however, of the relationship between mechanisms that control protein lateral mobility and rotational mobility in intact biological membranes. We have measured the lateral and rotational mobility of band 3 in spectrin-deficient red blood cells from patients with hereditary spherocytosis and hereditary pyropoikilocytosis. Our data suggest that band 3 lateral mobility is regulated by the spectrin content of the red cell membrane. In contrast, band 3 rotational mobility is unaffected by changes in spectrin content. Band 3 lateral mobility and rotational mobility must therefore be controlled by different molecular mechanisms.

UI MeSH Term Description Entries
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations

Related Publications

J D Corbett, and P Agre, and J Palek, and D E Golan
December 1998, Biochemistry,
J D Corbett, and P Agre, and J Palek, and D E Golan
November 1987, Rinsho byori. The Japanese journal of clinical pathology,
J D Corbett, and P Agre, and J Palek, and D E Golan
April 1991, Biochemistry,
J D Corbett, and P Agre, and J Palek, and D E Golan
May 1989, Biochimica et biophysica acta,
J D Corbett, and P Agre, and J Palek, and D E Golan
January 1977, Journal of supramolecular structure,
J D Corbett, and P Agre, and J Palek, and D E Golan
January 1992, Biochimica et biophysica acta,
Copied contents to your clipboard!