The molecular basis for cell cycle delays following ionizing radiation: a review. 1994

A Maity, and W G McKenna, and R J Muschel
Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia 19104.

Exposure of a wide variety of cells to ionizing (X- or gamma-) irradiation results in a division delay which may have several components including a G1 block, a G2 arrest or an S phase delay. The G1 arrest is absent in many cell lines, and the S phase delay is typically seen following relatively high doses (> 5 Gy). In contrast, the G2 arrest is seen in virtually all eukaryotic cells and occurs following high and low doses, even under 1 Gy. The mechanism underlying the G2 arrest may involve suppression of cyclin B1 mRNA and/or protein in some cell lines and tyrosine phosphorylation of p34cdc2 in others. Similar mechanisms are likely to be operative in the G2 arrest induced by various chemotherapeutic agents including nitrogen mustard and etoposide. The upstream signal transduction pathways involved in the G2 arrest following ionizing radiation remain obscure in mammalian cells; however, in the budding yeast the rad9 gene and in the fission yeast the chk1/rad27 gene are involved. There is evidence indicating that shortening of the G2 arrest results in decreased survival which has led to the hypothesis that during this block, cells repair damaged DNA following exposure to genotoxic agents. In cell lines examined to date, wildtype p53 is required for the G1 arrest following ionizing radiation. The gadd45 gene may also have a role in this arrest. Elimination of the G1 arrest leads to no change in survival following radiation in some cell lines and increased radioresistance in others. It has been suggested that this induction of radioresistance in certain cell lines is due to loss of the ability to undergo apoptosis. Relatively little is known about the mechanism underlying the S phase delay. This delay is due to a depression in the rate of DNA synthesis and has both a slow and a fast component. In some cells the S phase delay can be abolished by staurosporine, suggesting involvement of a protein kinase. Understanding the molecular mechanisms behind these delays may lead to improvement in the efficacy of radiotherapy and/or chemotherapy if they can be exploited to decrease repair or increase apoptosis following exposure to those agents.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016213 Cyclins A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators. Cyclin

Related Publications

A Maity, and W G McKenna, and R J Muschel
November 2009, Radiation and environmental biophysics,
A Maity, and W G McKenna, and R J Muschel
January 2004, Methods in molecular biology (Clifton, N.J.),
A Maity, and W G McKenna, and R J Muschel
November 1992, Radiation research,
A Maity, and W G McKenna, and R J Muschel
April 1999, Bulletin du cancer,
A Maity, and W G McKenna, and R J Muschel
March 2000, Oncogene,
A Maity, and W G McKenna, and R J Muschel
January 1974, Annals of clinical and laboratory science,
A Maity, and W G McKenna, and R J Muschel
July 1983, International journal of radiation biology and related studies in physics, chemistry, and medicine,
A Maity, and W G McKenna, and R J Muschel
April 1994, Radiation research,
A Maity, and W G McKenna, and R J Muschel
May 1995, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!