Urease from Staphylococcus saprophyticus: purification, characterization and comparison to Staphylococcus xylosus urease. 1994

U K Schäfer, and H Kaltwasser
Lehrstuhl für Mikrobiologie, Universität des Saarlandes, Saarbrücken, Germany.

Urease from Staphylococcus saprophyticus was purified more than 800-fold by liquid chromatography reaching homogeneity, as shown by isoelectric focussing, at a maximum specific activity of 1979 U/mg. The molecular weight of the native enzyme was 420,000; it consisted of subunits with molecular weights of 72,400 (alpha), 20,400 (beta), 13,900 (gamma) in an estimated (alpha beta gamma)4 stoichiometry. In native gradient polyacrylamide gel electrophoresis urease exhibited a multiple activity band pattern with molecular weights ranging from 420,000 to 100,000. In the native enzyme, 4.09 (+/- 0.25) atoms of nickel per molecule were detected. The N-terminal amino acids of the urease subunits were identical to those from Staphylococcus xylosus, and amino acid analysis revealed high similarities in both enzymes; no cysteine was detected after acid hydrolysis of vinylpyridinylated urease. Electron micrographs of negatively stained urease specimens from both staphylococci showed identical size and structure.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013210 Staphylococcus A genus of gram-positive, facultatively anaerobic, coccoid bacteria. Its organisms occur singly, in pairs, and in tetrads and characteristically divide in more than one plane to form irregular clusters. Natural populations of Staphylococcus are found on the skin and mucous membranes of warm-blooded animals. Some species are opportunistic pathogens of humans and animals.
D014510 Urease An enzyme that catalyzes the conversion of urea and water to carbon dioxide and ammonia. EC 3.5.1.5. Phytourease,Urea Amidohydrolase,Amidohydrolase, Urea
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

U K Schäfer, and H Kaltwasser
January 1983, Prikladnaia biokhimiia i mikrobiologiia,
U K Schäfer, and H Kaltwasser
January 1982, Mikrobiologiia,
U K Schäfer, and H Kaltwasser
February 1993, Journal of bacteriology,
U K Schäfer, and H Kaltwasser
April 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology,
U K Schäfer, and H Kaltwasser
January 1983, Mikrobiologiia,
U K Schäfer, and H Kaltwasser
January 2014, Letters in applied microbiology,
Copied contents to your clipboard!