Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. 1994

K S Elmslie, and P J Kammermeier, and S W Jones
Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106.

With 90 mM Ba2+, the main Ca2+ current in frog sympathetic neurons peaks near +30 mV and is blocked by omega-conotoxin GVIA (omega-CgTx). It is modulated by norepinephrine (NE) in a voltage-dependent manner via a membrane-delimited mechanism. Surprisingly, a different current dominates at more negative voltages (-30 to +10 mV). That novel current is not sensitive to selective blockers of L- or N-type channels (respectively, dihydropyridines or omega-CgTx) and is inhibited weakly if at all by NE. It is selectively inactivated at -40 mV and is selectively blocked by Ni2+, whereas Cd2+ is slightly more potent against the main current. The novel current is associated with a 19 pS channel (0.6 pA at 0 mV). This channel may have been misidentified as the single-channel correlate of the whole-cell N-type Ca2+ current in some previous studies.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.

Related Publications

K S Elmslie, and P J Kammermeier, and S W Jones
July 2008, The Journal of physiology,
K S Elmslie, and P J Kammermeier, and S W Jones
April 1997, Journal of neurophysiology,
K S Elmslie, and P J Kammermeier, and S W Jones
January 1992, Canadian journal of physiology and pharmacology,
K S Elmslie, and P J Kammermeier, and S W Jones
April 1995, The Journal of general physiology,
K S Elmslie, and P J Kammermeier, and S W Jones
July 1985, Brain research,
K S Elmslie, and P J Kammermeier, and S W Jones
January 1988, Proceedings of the Western Pharmacology Society,
K S Elmslie, and P J Kammermeier, and S W Jones
September 2001, Pflugers Archiv : European journal of physiology,
K S Elmslie, and P J Kammermeier, and S W Jones
February 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K S Elmslie, and P J Kammermeier, and S W Jones
April 1995, The Journal of physiology,
K S Elmslie, and P J Kammermeier, and S W Jones
May 1984, Brain research,
Copied contents to your clipboard!