| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D011965 |
Receptors, Glucocorticoid |
Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. |
Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids |
|
| D001921 |
Brain |
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. |
Encephalon |
|
| D000305 |
Adrenal Cortex Hormones |
HORMONES produced by the ADRENAL CORTEX, including both steroid and peptide hormones. The major hormones produced are HYDROCORTISONE and ALDOSTERONE. |
Adrenal Cortex Hormone,Corticoid,Corticoids,Corticosteroid,Corticosteroids,Cortex Hormone, Adrenal,Hormone, Adrenal Cortex,Hormones, Adrenal Cortex |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D018161 |
Receptors, Mineralocorticoid |
Cytoplasmic proteins that specifically bind MINERALOCORTICOIDS and mediate their cellular effects. The receptor with its bound ligand acts in the nucleus to induce transcription of specific segments of DNA. |
Mineralocorticoid Receptors,Aldosterone Receptor,Aldosterone Receptors,Corticoid I Receptor,Corticoid Type I Receptors,Mineralocorticoid Receptor,Receptors, Aldosterone,Receptors, Corticoid I,Receptors, Corticoid Type I,Receptors, Mineralocorticoids,Corticoid I Receptors,Mineralocorticoids Receptors,Receptor, Aldosterone,Receptor, Corticoid I,Receptor, Mineralocorticoid |
|