Transgenic mice provide genetic evidence that transforming growth factor alpha promotes skin tumorigenesis via H-ras-dependent and H-ras-independent pathways. 1994

C Jhappan, and H Takayama, and R B Dickson, and G Merlino
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland 20892.

The epidermal growth factor receptor (EGFR), which mediates the mitogenic activity of transforming growth factor alpha (TGF-alpha), has been shown to activate Ras in cultured cells through well-defined intermediary proteins. To examine the in vivo relationship between EGFR and Ras, chemical carcinogenesis of TGF-alpha transgenic mouse skin was chosen as an experimental model. Transgenic mice overexpressing TGF-alpha in a wide variety of epithelial tissues by virtue of a metallothionein promoter demonstrate a multitude of premalignant and neoplastic lesions but not spontaneous skin tumors. Transgenic skin was initiated with a single dose of 7,12-dimethylbenz[a]anthracene (DMBA), shown previously to induce, in concert with a tumor promoter, murine papillomas that consistently contain specific H-ras mutations. Virtually all DMBA-treated TGF-alpha transgenic mice, but not treated control animals, developed hyperplasias, papillomas, sebaceous adenomas, and more infrequently, sebaceous and squamous cell carcinomas. Therefore, TGF-alpha functions as an autonomous tumor promoter in DMBA-initiated transgenic skin. Skin tumors could be separated into two mutually exclusive genetic classes. In tumors harboring mutant H-ras, TGF-alpha transgene expression was relatively low and essentially unchanged relative to untreated skin; however, only 42% of skin tumors contained mutations in H-ras. Conversely, in most tumors with wild-type H-ras, transgenic TGF-alpha transcripts were enhanced 10- to 20-fold. These results suggest that strong constitutive EGFR stimulation, through TGF-alpha transgene overexpression, can substitute functionally for mutational activation of H-ras in skin tumorigenesis. Moreover, because H-ras mutational activation could not induce skin tumors without TGF-alpha transgene activity, simultaneous stimulation of an EGFR-mediated H-Ras-independent pathway appears to be required for tumor development as well.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D015127 9,10-Dimethyl-1,2-benzanthracene Polycyclic aromatic hydrocarbon found in tobacco smoke that is a potent carcinogen. 7,12-Dimethylbenzanthracene,7,12-Dimethylbenz(a)anthracene,7,12 Dimethylbenzanthracene

Related Publications

C Jhappan, and H Takayama, and R B Dickson, and G Merlino
October 1992, Molecular and cellular biology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
November 2001, American journal of physiology. Lung cellular and molecular physiology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
November 2017, Gastroenterology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
October 1992, Cancer research,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
September 1994, The Journal of laboratory and clinical medicine,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
October 1995, Research communications in molecular pathology and pharmacology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
October 2003, The American journal of pathology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
May 1999, American journal of respiratory cell and molecular biology,
C Jhappan, and H Takayama, and R B Dickson, and G Merlino
June 1999, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!