Some aspects of carbohydrate metabolism in the brain. 1994

T K Hevor
Laboratoire de Physiologie animale, Université d'Orléans, France.

A convenient physiology of the nervous system closely depends on the availability of glucose, the lack of which quickly results in syncope and death. Carbohydrate metabolism in the brain was long thought of as being specific and different from liver carbohydrate metabolism. The present report tries to summarize current data and advances in our knowledge about carbohydrate metabolism. Glucose is brought to the brain by blood flowing through a special network of arteries and is quickly catabolized by the glycolytic and tricarboxylic acid cycle pathways to synthesize energy. It is also used in the synthesis of numerous amino acids, nucleotides and NADPH. Glucose can be polymerized into glycogen in the brain. The nerve tissue is capable of synthesizing glucose-6-phosphate in the gluconeogenic pathway since the fructose-1,6-bisphosphatase, the key enzyme believed to be absent, is actually active and has been purified up to electrophoretic homogeneity. Moreover, the possibility of free glucose synthesis by astrocytes exists. Although the exact role of glycogen in the brain is not totally clear, it is known that the polysaccharide content generally decreases when the functioning of the brain is stimulated and increases in sedative state. This carbohydrate can therefore serve as an indicator for the level of brain activity. Through the administration of methionine sulfoximine, it is possible to increase the amount of glycogen in the brain massively and obtain particles similar to those found in the liver. These in vivo findings have been confirmed by studies based on cultured astrocytes. It has been shown with cultured astrocytes that glutamate increases glycogen synthesis in a pathway which still remains to be elucidated. Brain carbohydrate metabolism is thus in many ways similar to liver carbohydrate metabolism. The astrocyte constitutes the main cell implicated in this metabolism. Improvement in our knowledge about brain carbohydrate metabolism should spread the use of brain glucose metabolism in the diagnosis of certain diseases.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen
D006005 Phosphorylases A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE). Glucan Phosphorylase,Phosphorylase,alpha-Glucan Phosphorylases
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T K Hevor
October 1963, Il Policlinico. Sezione pratica,
T K Hevor
July 1955, The Journal of the Kentucky State Medical Association,
T K Hevor
January 1969, Polskie Archiwum Medycyny Wewnetrznej,
T K Hevor
March 1967, Biochemical pharmacology,
T K Hevor
September 1974, Proceedings of the Royal Society of Medicine,
T K Hevor
February 1977, Developmental medicine and child neurology,
T K Hevor
November 1970, Biochemical and biophysical research communications,
T K Hevor
April 1962, Investigative ophthalmology,
T K Hevor
December 1959, Experimental parasitology,
Copied contents to your clipboard!