Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. 1994

L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
Department of Biochemistry, School of Medical Sciences, University of Bristol, UK.

The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)-deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.

UI MeSH Term Description Entries
D008951 MNSs Blood-Group System A system of universal human blood group isoantigens with many associated subgroups. The M and N traits are codominant and the S and s traits are probably very closely linked alleles, including the U antigen. This system is most frequently used in paternity studies. Blood-Group System, MNSs,Blood-Group Systems, MNSs,MNSs Blood Group System,MNSs Blood-Group Systems,System, MNSs Blood-Group,Systems, MNSs Blood-Group
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006021 Glycophorins The major sialoglycoprotein of human erythrocyte membranes. It consists of at least two sialoglycopeptides and is composed of 60% carbohydrate including sialic acid and 40% protein. It is involved in a number of different biological activities including the binding of MN blood groups, influenza viruses, kidney bean phytohemagglutinin, and wheat germ agglutinin. Erythrocyte Sialoglycoproteins,Glycoconnectin,Glycoconnectins,Glycophorin,Glycophorin D,MN Sialoglycoprotein,Red Blood Cell Membrane Sialoglycoprotein,Glycophorin A,Glycophorin A(M),Glycophorin B,Glycophorin C,Glycophorin E,Glycophorin HA,Ss Erythrocyte Membrane Sialoglycoproteins,Ss Sialoglycoprotein,beta-Sialoglycoprotein,Sialoglycoprotein, MN,Sialoglycoprotein, Ss,Sialoglycoproteins, Erythrocyte,beta Sialoglycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates
D051272 Glucose Transporter Type 1 A ubiquitously expressed glucose transporter that is important for constitutive, basal GLUCOSE transport. It is predominately expressed in ENDOTHELIAL CELLS and ERYTHROCYTES at the BLOOD-BRAIN BARRIER and is responsible for GLUCOSE entry into the BRAIN. Erythrocyte Glucose Transporter,GLUT-1 Protein,GLUT1 Protein,SLC2A1 Protein,Solute Carrier Family 2, Facilitated Glucose Transporter, Member 1 Protein,GLUT 1 Protein,Glucose Transporter, Erythrocyte

Related Publications

L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
January 2004, The Journal of biological chemistry,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
December 1994, Fukuoka igaku zasshi = Hukuoka acta medica,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
March 2000, Blood reviews,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
November 1989, The Biochemical journal,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
July 2015, Cellular microbiology,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
January 2008, Blood cells, molecules & diseases,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
May 1996, Blood,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
March 1998, Blood,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
August 2000, The Biochemical journal,
L J Bruce, and J D Groves, and Y Okubo, and B Thilaganathan, and M J Tanner
May 1994, Biophysical journal,
Copied contents to your clipboard!