Diversity of siderophore genes encoding biosynthesis of 2,3-dihydroxybenzoic acid in Aeromonas spp. 1994

G Massad, and J E Arceneaux, and B R Byers
Department of Microbiology, University of Mississippi Medical Center, Jackson 39216-4505.

Most species of the genus Aeromonas produce the siderophore amonabactin, although two species produce enterobactin, the siderophore of many enteric bacteria. Both siderophores contain 2,3-dihydroxybenzoic acid (2,3-DHB). Siderophore genes (designated aebC, -E, -B and -A, for aeromonad enterobactin biosynthesis) that complemented mutations in the enterobactin genes of the Escherichia coli 2,3-DHB operon, entCEBA(P15), were cloned from an enterobactin-producing isolate of the Aeromonas spp. Mapping of the aeromonad genes suggested a gene order of aebCEBA, identical to that of the E. coli 2,3-DHB operon. Gene probes for the aeromonad aebCE genes and for amoA (the entC-equivalent gene previously cloned from an amonabactin-producing Aeromonas spp.) did not cross-hybridize. Gene probes for the E. coli 2,3-DHB genes entCEBA did not hybridize with Aeromonas spp. DNA. Therefore, in the genus Aeromonas, 2,3-DHB synthesis is encoded by two distinct gene groups; one (amo) is present in the amonabactin-producers, while the other (aeb) occurs in the enterobactin-producers. Each of these systems differs from (but is functionally related to) the E. coli 2,3-DHB operon. These genes may have diverged from an ancestral group of 2,3-DHB genes.

UI MeSH Term Description Entries
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004758 Enterobactin An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria. Enterochelin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000333 Aeromonas A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs singly, in pairs, or in short chains. Its organisms are found in fresh water and sewage and are pathogenic to humans, frogs, and fish.
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D017262 Siderophores Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994) Siderophore,Siderochromes
D062385 Hydroxybenzoates Benzoate derivatives substituted by one or more hydroxy groups in any position on the benzene ring. Hydroxybenzoic Acids,Acids, Hydroxybenzoic

Related Publications

G Massad, and J E Arceneaux, and B R Byers
October 1967, Biochimica et biophysica acta,
G Massad, and J E Arceneaux, and B R Byers
November 1992, Infection and immunity,
G Massad, and J E Arceneaux, and B R Byers
January 1988, Acta biochimica Polonica,
G Massad, and J E Arceneaux, and B R Byers
July 1993, Applied and environmental microbiology,
G Massad, and J E Arceneaux, and B R Byers
January 1997, Veterinary research,
G Massad, and J E Arceneaux, and B R Byers
May 2002, Microbial pathogenesis,
G Massad, and J E Arceneaux, and B R Byers
October 1968, Biochimica et biophysica acta,
G Massad, and J E Arceneaux, and B R Byers
April 1969, Biochimica et biophysica acta,
Copied contents to your clipboard!