Monoamine uptake in insect synaptosomal preparations. 1994

C Scavone, and M Mckee, and J A Nathanson
Department of Pharmacology, University of Sao Paulo, Brazil.

Biochemical studies of mammalian synaptosomal nerve fractions indicate the existence of multiple transporter proteins important for the termination of synaptic transmission by each of several monoamines. In insects, however, data on monoamine uptake has been limited to the study of whole tissue preparations, making it unclear whether neuronal (as opposed to glial) uptake is a significant mechanism in the insect. The present experiments elucidate the difficulties that have limited the use of insect synaptosomal preparations for characterizing amine reuptake. Key procedural improvements, including the utilization of carrier protein for tracer separation and the use of receptor antagonists to decrease non-specific membrane binding are described. With these and other modifications, reproducible sodium-dependent and cocaine-inhibitable dopamine and octopamine uptake are described in synaptosomal-containing preparations from insect brain and ganglia. These studies therefore support the existence of specific Na(+)-dependent uptake mechanisms in insect neurons.

UI MeSH Term Description Entries
D008803 Mianserin A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors. Lerivon,Mianserin Hydrochloride,Mianserin Monohydrochloride,Org GB 94,Tolvon,Hydrochloride, Mianserin,Monohydrochloride, Mianserin
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009655 Octopamine An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates. Norsynephrine,p-Octopamine,para-Octopamine,4-Octopamine,Norsympatol,alpha-(Aminoethyl)-4-hydroxybenzenemethanol
D009899 Optic Lobe, Nonmammalian In invertebrate zoology, a lateral lobe of the FOREBRAIN in certain ARTHROPODS. In vertebrate zoology, either of the corpora bigemina of non-mammalian VERTEBRATES. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1329) Corpora Bigemina,Optic Lobe, Non-Mammalian,Bigemina, Corpora,Non-Mammalian Optic Lobe,Non-Mammalian Optic Lobes,Nonmammalian Optic Lobe,Nonmammalian Optic Lobes,Optic Lobe, Non Mammalian,Optic Lobes, Non-Mammalian,Optic Lobes, Nonmammalian
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003058 Cockroaches Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae. Blaberidae,Blattaria,Blattidae,Blattodea,Cryptocercidae,Dictyoptera,Polyphagidae,Cockroach,Blattarias,Blattodeas,Cockroache,Cockroachs,Dictyopteras

Related Publications

C Scavone, and M Mckee, and J A Nathanson
October 1983, Journal of neuroscience methods,
C Scavone, and M Mckee, and J A Nathanson
March 1983, Naunyn-Schmiedeberg's archives of pharmacology,
C Scavone, and M Mckee, and J A Nathanson
January 1978, Biochemical pharmacology,
C Scavone, and M Mckee, and J A Nathanson
April 1997, Biological & pharmaceutical bulletin,
C Scavone, and M Mckee, and J A Nathanson
April 1988, Neurochemical research,
C Scavone, and M Mckee, and J A Nathanson
January 1981, Fundamental and applied toxicology : official journal of the Society of Toxicology,
C Scavone, and M Mckee, and J A Nathanson
January 1985, Farmakologiia i toksikologiia,
C Scavone, and M Mckee, and J A Nathanson
August 1987, Neurochemical research,
Copied contents to your clipboard!