Distribution of teichoic acid in the cell wall of Bacillus subtilis. 1975

R J Doyle, and M L McDannel, and J R Helman, and U N Streips

Hydrolysis of the cell wall of Bacillus subtilis 168 by autolysins or lysozyme resulted in the exposure of glucosylated teichoic acid molecules as evidenced by increased precipitation of [14C] concanavalin A. The number of concanavalin A-reactive sites increased significantly after only limited enzymatic digestion of the walls. Quantitative analyses of [14C] concanavalin A-treated wall or wall hydrolysate complexes indicate that approximately one-half of the teichoic acid molecules are surface-exposed, whereas the remainder are probably embedded within the peptidoglycan matrix. Treatment of the cell walls with sodium dodecyl sulfate or Triton X-100 did not result in new concanavalin A-reactive sites. Partial autolysis diminished the ability of the cell walls to adsorb bacteriophage phi25. Fluorescein-labeled concanavalin A bound intensely over the entire surface of growing B. subtilis 168 cells, suggesting that teichoic acid molecules are located on the total solvent-exposed surface area of the bacteria.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004267 DNA Viruses Viruses whose nucleic acid is DNA. DNA Virus,Virus, DNA,Viruses, DNA
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts

Related Publications

R J Doyle, and M L McDannel, and J R Helman, and U N Streips
February 1975, Journal of bacteriology,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
April 2023, Journal of bacteriology,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
December 2006, Journal of bacteriology,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
January 1979, Journal of bacteriology,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
April 1987, Molecular & general genetics : MGG,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
September 1981, European journal of biochemistry,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
July 2011, Carbohydrate research,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
January 2021, F1000Research,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
December 1994, Journal of bacteriology,
R J Doyle, and M L McDannel, and J R Helman, and U N Streips
June 1971, European journal of biochemistry,
Copied contents to your clipboard!