Activation of 5-HT3 receptors enhances the electrically evoked release of [3H]noradrenaline in rat brain limbic structures. 1994

R Mongeau, and C De Montigny, and P Blier
Department of Psychiatry, McGill University, Montréal, Québec, Canada.

The ability of 5-HT receptor agonists to modulate the electrically evoked release of [3H]noradrenaline was tested on preloaded slices of the rat brain. The 5-HT3 receptor agonist 2-methyl-5-hydroxytryptamine (2-methyl-5-HT) (10-100 microM) concentration-dependently enhanced the electrically evoked release of [3H]noradrenaline in the hippocampus and the hypothalamus, but only at 100 microM in the frontal cortex. The enhancing effect of 2-methyl-5-HT was blocked by the 5-HT3 receptor antagonist ondansetron. Elevated levels of endogenous 5-HT, achieved through selective reuptake blockade with paroxetine, as well as the addition of exogenous 5-HT in the medium, also enhanced [3H]noradrenaline release. Furthermore, this effect of paroxetine was blocked by nanomolar concentrations of the 5-HT3 receptor antagonists ondansetron, tropisetron and (S)-zacopride. Only high concentrations of the 5-HT3 receptor agonist m-chlorophenylbiguanide increased [3H]noradrenaline release from hippocampal slices, and this effect was not blocked by ondansetron nor by (S)-zacopride. The possibility that the enhancing effect of 2-methyl-5-HT could have been due to the antagonism of alpha 2-autoreceptors of noradrenergic terminals was ruled out by the unaltered effectiveness of the alpha 2-adrenoceptor agonist UK-14,304 (1 microM) to attenuate [3H]noradrenaline release in the presence of 100 microM of 2-methyl-5-HT. Moreover, in pseudo-one-pulse experiments 100 microM of 2-methyl-5-HT increased [3H]noradrenaline release in the absence of autoinhibition through alpha 2-adrenergic autoreceptors. The 5-HT1A and 5-HT1B receptor agonists 8-hydroxy-2(di-n-propyl-amino)tetralin and CP-93,129, respectively, as well as the 5-HT1 receptor agonist 5-carboxyamidotryptamine, were devoid of effect on the release of [3H]noradrenaline. The 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane increased the release of [3H]noradrenaline, but this effect was not blocked with the 5-HT3 receptor antagonist ondansetron. Lesioning 5-HT fibers with the neurotoxin 5,7-dihydroxytryptamine did not alter the action of 2-methyl-5-HT on [3H]noradrenaline release, indicating that this effect is not attributable to an action of this 5-HT3 receptor agonist on 5-HT terminals.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D015116 5,7-Dihydroxytryptamine Tryptamine substituted with two hydroxyl groups in positions 5 and 7. It is a neurotoxic serotonin analog that destroys serotonergic neurons preferentially and is used in neuropharmacology as a tool. 3-(2-Aminoethyl)-1H-indole-5,7-diol,5,7-Dihydroxytryptamine Creatine Sulfate,5,7 Dihydroxytryptamine,5,7 Dihydroxytryptamine Creatine Sulfate,Creatine Sulfate, 5,7-Dihydroxytryptamine,Sulfate, 5,7-Dihydroxytryptamine Creatine

Related Publications

R Mongeau, and C De Montigny, and P Blier
May 1971, The Journal of pharmacy and pharmacology,
R Mongeau, and C De Montigny, and P Blier
November 1992, General pharmacology,
R Mongeau, and C De Montigny, and P Blier
October 1987, Naunyn-Schmiedeberg's archives of pharmacology,
R Mongeau, and C De Montigny, and P Blier
July 1991, Brain research,
R Mongeau, and C De Montigny, and P Blier
April 1997, Pharmacological research,
R Mongeau, and C De Montigny, and P Blier
September 1994, Naunyn-Schmiedeberg's archives of pharmacology,
R Mongeau, and C De Montigny, and P Blier
July 1985, Naunyn-Schmiedeberg's archives of pharmacology,
R Mongeau, and C De Montigny, and P Blier
January 1990, Clinical and experimental pharmacology & physiology,
R Mongeau, and C De Montigny, and P Blier
October 1998, Journal of neurochemistry,
Copied contents to your clipboard!