Amino acid preferences at protein binding sites. 1994

H O Villar, and L M Kauvar
Terrapin Technologies, South San Francisco, CA 94080.

An analysis of the amino acid distribution at protein binding sites was carried out using 50 diverse macromolecules for which crystallographic data with a bound ligand are available. The purpose of this study is to determine whether differential trends in amino acid distributions exist at binding sites compared to other regions in the proteins. The results indicate that some residues, particularly Arg, His, Trp and Tyr are substantially more frequent at the binding sites, compared to the number of times these residues are present in proteins generally. These effects go beyond the differences seen comparing surface exposed residues to bulk protein. The resemblance in the residue utilization at the binding sites of unrelated proteins restricts the possible types of interactions with ligands, possibly accounting for the repetition of substructural motifs in chemicals with diverse pharmacological action. Further, the use of these diagnostic features may permit identification of ligand binding pockets in a protein structure deduced from sequence information or from data in the absence of a ligand. Some of these findings complement and extend previously described trends for antibody binding sites.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

H O Villar, and L M Kauvar
March 2011, Bioinformation,
H O Villar, and L M Kauvar
January 2015, Journal of structural biology,
H O Villar, and L M Kauvar
January 1982, Physiological chemistry and physics,
H O Villar, and L M Kauvar
February 2009, Drug discovery today,
H O Villar, and L M Kauvar
January 2007, Journal of chemical information and modeling,
H O Villar, and L M Kauvar
May 2006, BMC bioinformatics,
Copied contents to your clipboard!