Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization. 1994

L A Jaffe, and M Terasaki
Department of Physiology, University of Connecticut Health Center, Farmington 06032.

The endoplasmic reticulum (ER) of live starfish oocytes was observed during meiotic maturation and fertilization. The ER was visualized by injection into the cytoplasm of an oil drop saturated with the fluorescent lipophilic dye DiI; DiI spread throughout the oocyte endoplasmic reticulum and the pattern was imaged by confocal microscopy. The ER in the immature (germinal vesicle stage) oocyte was composed of interconnected membrane sheets. In response to 1-methyladenine, the sheets of ER appeared to become associated with the yolk platelets, forming spherical shells. A few of these spherical shells could sometimes be seen in immature oocytes, but their number was much greater in the egg at the first meiotic spindle stage. At about the time that the first polar body formed, the spherical shells disappeared, and the ER returned to a form like that of the immature oocyte. The spherical shells did not reappear during the second meiotic cycle. During maturation, the ER also began to move; the movement was apparent by the time of germinal vesicle breakdown and continued throughout both meiotic cycles and in eggs with second polar bodies. When eggs at the first meiotic spindle stage were fertilized, the form of the ER changed. Within 1 min after sperm addition to the observation chamber, the circular cross sections of the spherical shells of the unfertilized egg ER were no longer distinct. At this point, the form of the ER could not be discerned with the resolution of the light microscope; however, the rate of spreading of DiI from an injected oil drop decreased, providing strong evidence that the ER had become fragmented. The ER remained in this form for several minutes and then gradually, the appearance of the ER and the rate of DiI spreading returned to be like those of the unfertilized egg. Injection of inositol trisphosphate caused a similar change in the ER structure. These results indicate that the ER is a dynamic structure, the form of which changes during oocyte maturation and fertilization.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013215 Starfish Echinoderms having bodies of usually five radially disposed arms coalescing at the center. Sea Star,Seastar,Starfishes,Sea Stars,Seastars

Related Publications

L A Jaffe, and M Terasaki
January 1984, International review of cytology,
L A Jaffe, and M Terasaki
April 2006, Seminars in cell & developmental biology,
L A Jaffe, and M Terasaki
August 2022, Toxicology in vitro : an international journal published in association with BIBRA,
L A Jaffe, and M Terasaki
June 2009, Biochemical and biophysical research communications,
L A Jaffe, and M Terasaki
January 2002, Biochemical and biophysical research communications,
Copied contents to your clipboard!