Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses. 1994

A Berkowitz, and P S Stein
Department of Biology, Washington University, St. Louis, Missouri 63130.

In the preceding companion article (Berkowitz and Stein, 1994b), we showed that many descending propriospinal neurons in the turtle were rhythmically activated during two different motor patterns, fictive rostral scratching and fictive pocket scratching. In this article, we present phase analyses of the activity of each such neuron during fictive scratching. Each neuron's activity was concentrated in a particular phase of the ipsilateral hip flexor muscle nerve (VP-HP) activity cycle; each had a distinct "preferred phase." Each neuron's preferred phase during fictive rostral scratching was similar to its preferred phase during fictive pocket scratching. This result is consistent with the idea that some descending propriospinal neurons may contribute to the generation of both rostral scratching and pocket scratching. Many descending propriospinal neurons were rhythmically activated during fictive scratching evoked on either side of the body. This activity may contribute to production of bilateral hindlimb movements during scratching. It is also possible that synaptic interactions between the two sides of the spinal cord may be important in generating the motor patterns for movement of a single hindlimb. In addition, we present a model which illustrates that a population of propriospinal neurons, each of which is broadly tuned to a region of the body surface and is rhythmically activated in a constant phase of the hip control cycle, could mediate the selection and generation of rostral scratching and pocket scratching. Thus, the selection of an appropriate motor pattern and the production of the required knee-hip synergy may each be distributed over a diverse population of spinal cord neurons. This model requires that each such neuron project to both knee muscle and hip muscle motoneurons. According to this model, the process of selecting a motor pattern would not be completed until knee muscle motoneurons integrate overlapping excitatory and inhibitory inputs.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

A Berkowitz, and P S Stein
December 2003, Journal of neurophysiology,
A Berkowitz, and P S Stein
June 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Berkowitz, and P S Stein
August 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Berkowitz, and P S Stein
February 1998, Journal of neurophysiology,
A Berkowitz, and P S Stein
December 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Berkowitz, and P S Stein
January 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Berkowitz, and P S Stein
January 1979, Neirofiziologiia = Neurophysiology,
Copied contents to your clipboard!