Skeletal muscle junctional membrane protein content in pigs with different ryanodine receptor genotypes. 1994

J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
Department of Veterinary PathoBiology, University of Minnesota, St. Paul 55108.

The content of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, transverse tubule dihydropyridine receptor (DHPR), and SR ryanodine receptor (RyR) was determined in muscle of pigs homozygous for the normal RyR allele and homozygous or heterozygous for the malignant hyperthermia-susceptible (MHS) RyR allele. Total muscle membranes isolated from 1-day-old pigs of the three different genotypes did not differ in the content of any of these proteins. However, at 28 days of age, crude membranes and total muscle homogenates from homozygous MHS pigs exhibited only 61-81% of the [3H]PN 200-110 or [3H]ryanodine binding of identical preparations isolated from normal pigs; these MHS membranes also contained only 50% of the normal content of each of the DHPR subunits. The crude membranes and muscle homogenates from heterozygous pigs were intermediate to both types of homozygotes in terms of [3H]PN 200-110 binding, [3H]ryanodine binding, and the content of the DHPR subunits. However, membrane preparations enriched in triadic junctional proteins isolated from 3- to 4-mo-old pigs of the three different genotypes did not differ in their [3H]PN 200-110 binding, [3H]ryanodine binding, or Ca(2+)-ATPase activities. We conclude that, although the stoichiometry of the RyR to DHPR is not altered, the presence of the MHS RyR allele during muscle development results in a decreased relative content of these two proteins. This is probably due to a lower junctional membrane content and may be an important ultrastructural consequence of the altered sarcoplasmic Ca2+ regulation in MHS muscle.

UI MeSH Term Description Entries
D008305 Malignant Hyperthermia Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia. Hyperpyrexia, Malignant,Hyperthermia, Malignant,Malignant Hyperpyrexia,Anesthesia Related Hyperthermia,Hyperthermia of Anesthesia,Anesthesia Hyperthermia,Hyperthermia, Anesthesia Related,Malignant Hyperpyrexias
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
April 2003, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
February 2002, Cell calcium,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
January 2022, Structure (London, England : 1993),
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
July 1986, The Journal of biological chemistry,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
June 1997, The Journal of membrane biology,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
December 1995, Biophysical journal,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
October 1990, General physiology and biophysics,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
January 1992, Proceedings. Biological sciences,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
J R Mickelson, and J M Ervasti, and L A Litterer, and K P Campbell, and C F Louis
December 1998, The Journal of biological chemistry,
Copied contents to your clipboard!