Insulin enhances sodium sensitivity of Na-K-ATPase in isolated rat proximal convoluted tubule. 1994

E Féraille, and M L Carranza, and M Rousselot, and H Favre
Division de Néphrologie, Hôpital Cantonal Universitaire, Geneva, Switzerland.

Insulin has been shown to stimulate the rate of ouabain-sensitive 86Rb influx in the isolated rat proximal convoluted tubule (PCT). To study the mechanism of this activation of Na-K-adenosinetriphosphatase (Na-K-ATPase), we determined the actions of insulin on 1) the maximal activity (Vmax) of Na-K-ATPase hydrolytic activity; 2) the maximal rate of ouabain-sensitive 86Rb influx (after intracellular Na loading); 3) the rate of ouabain-sensitive 86Rb influx under conditions where intracellular Na concentration is rate limiting, either in the presence or in the absence of 5 x 10(-4) M amiloride and/or low extracellular Na concentration (3 mM); and 4) the Na sensitivity of the Na-K-ATPase hydrolytic activity. The maximal rates of Na-K-ATPase hydrolytic activity and of ouabain-sensitive 86Rb uptake were unchanged by insulin. In contrast, we confirmed that insulin enhanced 86Rb uptake (in peq.mm-1.min-1) in the absence of inhibitor of the Na/H exchanger [18.2 +/- 1.7 to 24.1 +/- 1.3 (SE), P < 0.03] and, in addition, demonstrated a similar stimulation in the presence of either 5 x 10(-4) M amiloride (7.2 +/- 0.6 to 10.7 +/- 0.9, P < 0.01), 3 mM extracellular Na (4.1 +/- 0.4 to 5.6 +/- 0.2, P < 0.05), and both amiloride and 3 mM extracellular Na (2.1 +/- 0.7 to 4.5 +/- 0.4, P < 0.03). Finally, insulin increased the sensitivity of Na-K-ATPase to Na as the apparent dissociation constant decreased from 46.5 +/- 5.3 to 27.6 +/- 3.0 mM (P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

E Féraille, and M L Carranza, and M Rousselot, and H Favre
March 1994, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
January 1987, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
January 1988, Progress in clinical and biological research,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
April 2023, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
March 1997, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
June 2002, Acta physiologica Scandinavica,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
February 1992, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
April 2003, Pflugers Archiv : European journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
May 2010, American journal of physiology. Renal physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
April 1986, The American journal of physiology,
Copied contents to your clipboard!