In vivo pharmacodynamic studies of the disulfiram metabolite S-methyl N,N-diethylthiolcarbamate sulfoxide: inhibition of liver aldehyde dehydrogenase. 1994

B W Hart, and M D Faiman
Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66045.

S-methyl N,N-diethylthiolcarbamate sulfoxide (DETC-MeSO) is proposed to be the metabolite of disulfiram responsible for the in vivo inhibition of liver low Km aldehyde dehydrogenase (ALDH) in the rat. Studies were conducted in male Sprague-Dawley rats and also in vitro using both rat liver mitochondrial and purified bovine mitochondrial low Km ALDH to investigate further the pharmacodynamic and pharmacokinetic characteristics of DETC-MeSO. Administration of DETC-MeSO to rats produced a rapid and maximal inhibition of liver mitochondrial low Km ALDH within 2 hr, which was still inhibited 30% after 168 hr. After DETC-MeSO treatment, the maximum plasma concentration of DETC-MeSO was reached within 0.5 hr, with DETC-MeSO being undetectable 2 hr after DETC-MeSO dosing. Although a trace amount of DETC-Me was detected in the plasma 0.5 hr after DETC-MeSO administration to rats, this disappeared within 1 hr. When rats were treated with disulfiram, the maximal plasma concentration of DETC-MeSO was found within 2 hr, with only a very small quantity of DETC-MeSO still detectable after 8 hr. Rats also were given the disulfiram metabolites diethyldithiocarbamate (DDTC), diethyldithiocarbamate-methyl ester (DDTC-Me), and S-methyl N,N-diethylthiolcarbamate (DETC-Me), and plasma analyzed for DETC-MeSO 2 hr after the administration of these metabolites. DETC-MeSO was detected in plasma, further illustrating that DETC-MeSO can be found in plasma after the administration of either disulfiram, or the subsequent in vivo metabolites DDTC, DDTC-Me, or DETC-Me.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004050 Ditiocarb A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM. Diethyldithiocarbamate,Diethylcarbamodithioic Acid,Diethyldithiocarbamic Acid,Dithiocarb,Ditiocarb Sodium,Ditiocarb, Ammonium Salt,Ditiocarb, Bismuth Salt,Ditiocarb, Lead Salt,Ditiocarb, Potassium Salt,Ditiocarb, Sodium Salt,Ditiocarb, Sodium Salt, Trihydrate,Ditiocarb, Tin(4+) Salt,Ditiocarb, Zinc Salt,Imuthiol,Sodium Diethyldithiocarbamate,Thiocarb,Zinc Diethyldithiocarbamate,Ammonium Salt Ditiocarb,Bismuth Salt Ditiocarb,Diethyldithiocarbamate, Sodium,Diethyldithiocarbamate, Zinc,Lead Salt Ditiocarb,Potassium Salt Ditiocarb,Sodium Salt Ditiocarb,Sodium, Ditiocarb,Zinc Salt Ditiocarb
D004221 Disulfiram A carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. When alcohol is ingested after administration of disulfiram, blood acetaldehyde concentrations are increased, followed by flushing, systemic vasodilation, respiratory difficulties, nausea, hypotension, and other symptoms (acetaldehyde syndrome). It acts by inhibiting aldehyde dehydrogenase. Tetraethylthiuram Disulfide,Alcophobin,Antabus,Antabuse,Anticol,Bis(diethylthiocarbamoyl) Disulfide,Dicupral,Esperal,Tetraethylthioperoxydicarbonic Diamide, ((H2N)C(S))2S2,Teturam,Disulfide, Tetraethylthiuram
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000079 Acetaldehyde A colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. It has a general narcotic action and also causes irritation of mucous membranes. Large doses may cause death from respiratory paralysis. Ethanal
D000444 Aldehyde Dehydrogenase An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70. D-Glucuronolactone Dehydrogenase,Aldehyde Dehydrogenase (NAD(+)),Aldehyde Dehydrogenase E1,Aldehyde Dehydrogenase E2,Aldehyde-NAD Oxidoreductase,Aldehyde NAD Oxidoreductase,D Glucuronolactone Dehydrogenase,Dehydrogenase, Aldehyde,Dehydrogenase, D-Glucuronolactone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B W Hart, and M D Faiman
January 2001, Chemico-biological interactions,
Copied contents to your clipboard!