Expression of retinoic acid receptor subtypes and cellular retinoic acid binding protein-II mRNAs during differentiation of human trophoblast cells. 1994

A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
Department of Endocrinology, Children's Hospital Medical Center, Cincinnati, OH 45229.

An in vitro model of trophoblast cell differentiation has been used to examine the developmental expression of retinoid receptor mRNAs during the differentiation of human placental cytotrophoblast cells to syncytiotrophoblast cells. The levels of RAR alpha, RAR beta, RXR alpha mRNA increased by 12, 7, and 3 fold, respectively, during trophoblast differentiation, while the levels of RAR gamma mRNA remained relatively constant; and the increase in retinoid receptor mRNA expression preceded the increase in the expression of placental lactogen (hPL), a specific marker of syncytiotrophoblast cells. CRABP-II mRNA levels were lower in cytotrophoblast cells than in syncytiotrophoblast cells. Mobility shift assays demonstrated the appearance of a specific band that bound to a labeled DNA probe containing a retinoic acid responsive element (RARE) that was most intense from nuclear extracts from syncytiotrophoblast cells. These results suggest possible roles for these receptors in the regulation of trophoblast differentiation and hPL gene expression.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010928 Placental Lactogen A polypeptide hormone of approximately 25 kDa that is produced by the SYNCYTIOTROPHOBLASTS of the PLACENTA, also known as chorionic somatomammotropin. It has both GROWTH HORMONE and PROLACTIN activities on growth, lactation, and luteal steroid production. In women, placental lactogen secretion begins soon after implantation and increases to 1 g or more a day in late pregnancy. Placental lactogen is also an insulin antagonist. Choriomammotropin,Chorionic Somatomammotropin, Human,Human Placental Lactogen,Lactogen Hormone, Placental,Mammotropic Hormone, Placental,Somatomammotropin, Chorionic,Choriomammotrophin,HCS (Human Chorionic Somatomammotropin),HPL (Human Placental Lactogen),PAPP-D,Placental Luteotropin,Pregnancy-Associated Plasma Protein D,Chorionic Somatomammotropin,Human Chorionic Somatomammotropin,Lactogen, Placental,Luteotropin, Placental,Placental Lactogen, Human,Placental Mammotropic Hormone,Pregnancy Associated Plasma Protein D
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014327 Trophoblasts Cells lining the outside of the BLASTOCYST. After binding to the ENDOMETRIUM, trophoblasts develop into two distinct layers, an inner layer of mononuclear cytotrophoblasts and an outer layer of continuous multinuclear cytoplasm, the syncytiotrophoblasts, which form the early fetal-maternal interface (PLACENTA). Cytotrophoblasts,Syncytiotrophoblasts,Trophoblast,Cytotrophoblast,Syncytiotrophoblast
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
May 2010, The Journal of biological chemistry,
A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
July 1998, Biochemical and biophysical research communications,
A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
August 1992, The Journal of investigative dermatology,
A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
February 1993, Archives of biochemistry and biophysics,
A Stephanou, and N J Sarlis, and R Richards, and S Handwerger
October 1993, The Journal of biological chemistry,
Copied contents to your clipboard!