X-ray structure of nucleoside diphosphate kinase complexed with thymidine diphosphate and Mg2+ at 2-A resolution. 1994

J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
Laboratoire de Biologie Structurale, UMR 9920 CNRS-Université Paris-Sud, Gif-sur-Yvette, France.

We report the crystal structure of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum with thymidine diphosphate (dTDP) and Mg2+ bound at the active site. The structure has been refined to an R-factor of 18.3% at 2-A resolution. The base stacks on the aromatic ring of Phe 64 near the protein surface and is wedged between the side chains of Phe 64 and Val 116. The sugar and the pyrophosphate are deeper inside the protein and make numerous H-bonds with protein side chains. There is no backbone interaction with the nucleotide. A Mg2+ ion bridges the alpha- and beta-phosphates and interacts with the protein via water molecules. NDP kinase shows little specificity toward ribonucleotides and deoxyribonucleotides. This property, required by the enzyme biological function, can now be analyzed by comparing the crystal structures of free, ADP-ligated, and dTDP-ligated enzymes. The most significant differences are located in residues 60-64, which adapt their conformation to allow Phe 64 to stack on both types of bases. Nonspecific binding is achieved by the absence of polar interaction between the base and protein atoms. The ribose of ADP and the deoxyribose of dTDP occupy similar positions, their hydroxyl groups interacting with Lys 16 and Asn 119. The H-bond between Lys 16 and the O2' hydroxyl of ADP is replaced by a similar interaction with a water molecule in the dTDP complex. The beta-phosphate position is the same for ADP and dTDP, suggesting that the mechanism of phosphate transfer is the same for all substrates ofNDP kinase.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009701 Nucleoside-Diphosphate Kinase An enzyme that is found in mitochondria and in the soluble cytoplasm of cells. It catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside diphosphate, e.g., UDP, to form ADP and UTP. Many nucleoside diphosphates can act as acceptor, while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.6. Deoxynucleoside Diphosphate Kinases,GDP Kinase,Nucleoside Diphosphokinases,Nucleoside-Diphosphate Kinases,Diphosphate Kinases, Deoxynucleoside,Diphosphokinases, Nucleoside,Kinase, GDP,Kinase, Nucleoside-Diphosphate,Kinases, Deoxynucleoside Diphosphate,Kinases, Nucleoside-Diphosphate,Nucleoside Diphosphate Kinase,Nucleoside Diphosphate Kinases
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
December 1995, Structure (London, England : 1993),
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
November 1994, Journal of molecular biology,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
September 1992, The EMBO journal,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
July 1997, Proceedings of the National Academy of Sciences of the United States of America,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
June 2002, Proteins,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
August 2001, Journal of molecular biology,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
January 2010, Acta crystallographica. Section D, Biological crystallography,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
May 1998, Archives of biochemistry and biophysics,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
April 2000, Acta crystallographica. Section D, Biological crystallography,
J Cherfils, and S Moréra, and I Lascu, and M Véron, and J Janin
December 1993, Journal of molecular biology,
Copied contents to your clipboard!