Engineered biosynthesis of novel polyketides: stereochemical course of two reactions catalyzed by a polyketide synthase. 1994

H Fu, and R McDaniel, and D A Hopwood, and C Khosla
Department of Chemical Engineering, Stanford University, California 94305-5025.

A genetically engineered strain expressing the essential components of the tetracenomycin polyketide synthase (tcm PKS) along with the actinorhodin ketoreductase (act KR) was found to produce two new (diastereomeric) aromatic polyketides, designated RM20b and RM20c, in addition to RM20, whose structure was reported earlier [McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., & Khosla, C. (1993) Science 262, 1546-1550]. Spectroscopic and in vivo isotopic labeling analysis of RM20b and RM20c revealed that their polyketide backbones were identical to that of RM20 with respect to chain length, regiospecificity of ketoreduction, and regiospecificity of the first intramolecular aldol condensation. This is consistent with earlier predictions that the essential components of the PKS--a bifunctional ketosynthase/acyltransferase, a chain length determining factor, and an acyl carrier protein--are responsible for controlling each of these features of the polyketide backbone [McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., & Khosla, C. (1993) Science 262, 1546-1550; McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., & Khosla, C. (1993) J. Am. Chem. Soc. 115, 11671-11675; Fu, H., Ebert-Khosla, S., Hopwood, D. A., & Khosla, C. (1994) J. Am. Chem. Soc. 116, 4166-4170]. In addition, however, RM20b and RM20c possess two unusual features. In both molecules the hydroxyls on sp3 C-9 and C-7 of the first six-membered ring, which arise as a result of ketoreduction and aldol condensation, respectively, are intact, rather than being lost via dehydration. Furthermore, the relative yield of RM20b (in which these hydroxyls are syn) is 7-fold greater than that of RM20c (in which they are anti).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011753 Pyrones Keto-pyrans.
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

H Fu, and R McDaniel, and D A Hopwood, and C Khosla
December 1993, Science (New York, N.Y.),
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
January 2022, Frontiers in bioengineering and biotechnology,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
November 2006, Journal of natural products,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
January 2022, Frontiers in bioengineering and biotechnology,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
February 2004, PLoS biology,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
September 2005, Journal of the American Chemical Society,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
February 2006, Organic letters,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
February 2016, Natural product reports,
H Fu, and R McDaniel, and D A Hopwood, and C Khosla
July 2010, Natural product reports,
Copied contents to your clipboard!