DNA fragmentation into 200-250 and/or 30-50 kilobase pair fragments in rat liver nuclei is stimulated by Mg2+ alone and Ca2+/Mg2+ but not by Ca2+ alone. 1994

K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
MRC Toxicology Unit, University of Leicester, UK.

Internucleosomal cleavage of DNA has often been regarded as the biochemical hallmark of apoptosis. We now demonstrate in isolated rat liver nuclei that DNA is initially cleaved into > or = 700, 200-250 kbp and 30-50 kbp fragments via a multi-step process, which is activated by Mg2+ and Mg2+(+)Ca2+ but not by Ca2+ alone. The subsequent internucleosomal cleavage requires both cations. These findings demonstrate that a key event in the apoptotic process is the fragmentation of DNA into large kbp fragments by either a Mg(2+)-dependent process (which can be potentiated by Ca2+) and/or by a Ca2+/Mg2+ activated endonuclease(s).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
July 2000, Biochemical and biophysical research communications,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
July 1989, The Biochemical journal,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
April 1989, The Journal of biological chemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
November 1986, Biochemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
May 1994, The Journal of biological chemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
February 1991, FEBS letters,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
July 1995, Molecular and cellular biochemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
September 1988, The Journal of biological chemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
August 1990, Molecular and cellular biochemistry,
K Cain, and S H Inayat-Hussain, and J T Wolfe, and G M Cohen
September 1994, FEBS letters,
Copied contents to your clipboard!