Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR. 1994

E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
Department of Molecular Genetics, College of Biological Sciences, Ohio State University, Columbus 43210-1241.

By using PCR, Actinobacillus actinomycetemcomitans strains were identified directly from plaque samples without the need to isolate or culture bacteria. DNA fragments were generated by a nested, two-step PCR amplification of the ribosomal spacer region between the 16S and 23S rRNA genes. For the first amplification, primers homologous to sequences common to all bacterial species were used. This was followed by a second amplification with primers specific to A. actinomycetemcomitans. The ribosomal DNA spacer region was amplified from as few as 10 bacterial cells within a total population of 10(8) cells (0.00001%), and cross-reactivity between species was not observed. DNA fragments specific for Porphyromonas gingivalis were generated from the same samples by using a P. gingivalis-specific primer, and equivalent sensitivity and specificity were observed. A. actinomycetemcomitans was detected in 60% and P. gingivalis was detected in 79% of 52 subjects tested. Sequence analysis of the spacer region DNA fragment for A. actinomycetemcomitans gave precise strain identification, producing unique sequences for seven reference strains and identification of nine plaque-derived isolates. A phylogenetic tree based on quantitative sequence relationships was constructed. Two-step PCR amplification directly from plaque samples combined with sequence analysis of the ribosomal DNA spacer region provides a sensitive assay for detection and strain identification of multiple species directly from a single plaque sample. This simplified approach provides a practical method for large-scale studies on the transmission and pathogenicity of periodontitis-associated bacteria.

UI MeSH Term Description Entries
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003773 Dental Plaque A film that attaches to teeth, often causing DENTAL CARIES and GINGIVITIS. It is composed of MUCINS, secreted from salivary glands, and microorganisms. Plaque, Dental
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
May 2001, Journal of clinical microbiology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
December 1995, Journal of clinical microbiology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
November 1999, Journal of clinical periodontology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
December 2007, Oral microbiology and immunology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
November 1995, Journal of dental research,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
June 1998, Journal of clinical microbiology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
September 1990, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
May 1999, Journal of periodontology,
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
January 2010, Methods in molecular biology (Clifton, N.J.),
E J Leys, and A L Griffen, and S J Strong, and P A Fuerst
May 1990, Journal of periodontology,
Copied contents to your clipboard!