Structural and functional reconstitution of thin filaments in skeletal muscle. 1994

T Funatsu, and T Anazawa, and S Ishiwata
Yanagida Biomotron Project, ERATO, JRDC, Osaka, Japan.

Thin filaments were reconstituted by incorporating exogenous actin, tropomyosin and troponin into glycerinated skeletal muscle fibres or myofibrils. Firstly, thin filaments except short fragments at the Z line were selectively removed by treatment with plasma gelsolin, an actin severing protein. As a result, the fibres (or fibrils) lost the ability to generate active tension. Next, actin filaments were reconstituted by adding purified G-actin which polymerizes onto the actin fragments which remained at the Z line. Rhodamine phalloidin staining of myofibrils showed that exogenous actin was incorporated into the position where the intrinsic thin filaments located. Thin section electron micrographs of fibres showed that reconstituted actin filaments ran from the Z line to the inside of the A band, with some reaching the H zone. The number density of reconstituted actin filaments in the A band was about 20% of that found in intact fibres. The actin filament-reconstituted fibres (or fibrils) generated active tension in a Ca(2+)-insensitive manner and the tension was reversibly suppressed by 2,3-butanedione 2-monoxime. The recovered active tension was about 20% of tension developed by intact fibres. These results indicate that reconstituted actin filaments bear active tension similar to that borne by intact thin filaments. Thin filament-reconstituted fibres, which were prepared by adding purified tropomyosin-troponin complexes into actin filament-reconstituted fibres, showed Ca(2+)-sensitive tension generation. The maximum tension generated was not affected by the presence of tropomyosin and troponin. SDS-PAGE analysis showed that more than 25% of actin and 20% of tropomyosin and troponin was incorporated into the reconstituted fibres. These results indicate that the structure and function of thin filaments are substantially reconstituted by self-assembly of actin, tropomyosin and troponin. The reconstituted fibres and fibrils will be useful for studying the molecular mechanism of muscle contraction and its regulation.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003931 Diacetyl Carrier of aroma of butter, vinegar, coffee, and other foods. 2,3-Butanedione,Biacetyl,Diketobutane,Dimethyldiketone,Dimethylglyoxal,2,3 Butanedione
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014021 Tissue Preservation The process by which a tissue or aggregate of cells is kept alive outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Preservation, Tissue,Preservations, Tissue,Tissue Preservations
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D014336 Troponin One of the minor protein components of skeletal and cardiac muscles. It functions as the calcium-binding component in a complex with BETA-TROPOMYOSIN; ACTIN; and MYOSIN and confers calcium sensitivity to the cross-linked actin and myosin filaments. Troponin itself is a complex of three regulatory proteins (TROPONIN C; TROPONIN I; and TROPONIN T). Troponin Complex,Troponins

Related Publications

T Funatsu, and T Anazawa, and S Ishiwata
November 1996, Biophysical journal,
T Funatsu, and T Anazawa, and S Ishiwata
February 1976, Journal of biochemistry,
T Funatsu, and T Anazawa, and S Ishiwata
January 1979, Journal of molecular biology,
T Funatsu, and T Anazawa, and S Ishiwata
April 2010, Analytical biochemistry,
T Funatsu, and T Anazawa, and S Ishiwata
December 1988, Journal of molecular biology,
T Funatsu, and T Anazawa, and S Ishiwata
May 1985, FEBS letters,
T Funatsu, and T Anazawa, and S Ishiwata
September 1995, Biophysical journal,
T Funatsu, and T Anazawa, and S Ishiwata
April 1993, The Journal of biological chemistry,
T Funatsu, and T Anazawa, and S Ishiwata
September 1981, Journal of molecular biology,
T Funatsu, and T Anazawa, and S Ishiwata
January 1988, Advances in experimental medicine and biology,
Copied contents to your clipboard!