[Binding of a fragment of yeast phenylalanyl tRNA containing an anticodon loop with 30S and 70S ribosomes from Escherichia coli. The role of guanosine-42 in this interaction]. 1994

S A Nekhaĭ, and E M Saminskiĭ

Poly(U)-dependent binding of isolated yeast tRNA(Phe) anticodon hairpin (15-nucleotide-long, corresponding to nucleotides 28-42 within the tRNA) and several its derivatives to the P site of Escherichia coli 30S and 70S ribosomes was studied quantitatively. The affinity for the hairpin binding to 70S ribosomes was shown to be only 30-fold weaker than that for the binding of total tRNA(Phe). Within the anticodon hairpin, removal of the 3'-terminal nucleotide corresponding to guanosine-42 in tRNA(Phe) decreases the association constant for the anticodon arm-ribosome interaction 15-fold. Replacement of this guanosine with other nucleosides does not affect the affinity, regardless of involvement in the hairpin secondary structure. These data indicate that G-42 affects the anticodon arm affinity most likely by forming a direct contact with the ribosome. One can assume that this nucleotide within intact tRNA also forms a contact with the P site. Since the 3'-terminal ribose modifications (oxidation, oxidation and reduction) as well as the presence or absence of the 3'-terminal phosphate does not affect the affinity of the anticodon arm fragment, the latter is obviously involved in the interaction through 3'-terminal nucleotide base groups which does not take part in base pairing.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006151 Guanosine A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012360 RNA, Transfer, Phe A transfer RNA which is specific for carrying phenylalanine to sites on the ribosomes in preparation for protein synthesis. Phenylalanine-Specific tRNA,Transfer RNA, Phe,tRNAPhe,tRNA(Phe),Phe Transfer RNA,Phenylalanine Specific tRNA,RNA, Phe Transfer,tRNA, Phenylalanine-Specific
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

S A Nekhaĭ, and E M Saminskiĭ
October 1978, Nucleic acids research,
S A Nekhaĭ, and E M Saminskiĭ
November 1973, Biochemical and biophysical research communications,
S A Nekhaĭ, and E M Saminskiĭ
December 1967, Biochemical and biophysical research communications,
S A Nekhaĭ, and E M Saminskiĭ
June 1982, Nucleic acids research,
Copied contents to your clipboard!