The effect of hypertonicity on force generation in tetanized single fibres from frog skeletal muscle. 1994

G Piazzesi, and M Linari, and V Lombardi
Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Italy.

1. We compared the tension transient that follows a step change in sarcomere length in normal Ringer solution with that in Ringer solution made hypertonic by the addition of 98 mM sucrose. Steps were applied on tetanized single muscle fibres during either the isometric plateau or the steady force response to lengthening at low speed. Sarcomere length was controlled on selected fibre segments by a striation follower. Analysis is limited to phase 1 (the tension change simultaneous with the length step, mainly due to cross-bridge elasticity) and phase 2 (the quick phase of tension recovery, a manifestation of the cross-bridge elementary force-generating process). 2. At the isometric tetanus plateau the steady force is reduced by 19% in hypertonic solution, and the stiffness is slightly increased. During slow lengthening both steady force and stiffness are similar in normal solution and in hypertonic solution. In hypertonic solution the tension-to-stiffness ratio, a measure of the mean cross-bridge extension before the step, is markedly reduced in isometric conditions (-23%), but not during lengthening (-2%). 3. The plots of instantaneous tension versus the length change during the step show that in hypertonic medium the elasticity of the fibre is almost undamped. Thus the increase in stiffness cannot be attributed to an increase in viscosity. 4. In isometric conditions (T2-T1)/(Ti-T1), the proportion of the initial tension drop recovered at the end of phase 2, is not affected by hypertonicity for releases of moderate and large size (> 2 nm) and is reduced for small releases (< 2 nm) and for stretches. The abscissa intercept of the relation (T2-T1)/(Ti-T1) versus step amplitude is the same in both media. During lengthening, for releases of small and moderate size, (T2-T1)/(Ti-T1) is 20% lower in hypertonic solution. For large releases the slope of the relation is lower so that the abscissa intercept is not changed. 5. The speed of quick tension recovery following a step length change imposed in isometric conditions is slightly depressed in hypertonic solution. The relation between speed of recovery and step amplitude maintains its shape and is shifted downwards. During lengthening, the speed of quick tension recovery in hypertonic solution is less dependent on step amplitude than in normal solution, as if a more linear viscoelasticity is responsible for a large fraction of residual recovery.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D004548 Elasticity Resistance and recovery from distortion of shape.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

G Piazzesi, and M Linari, and V Lombardi
August 1983, Canadian journal of physiology and pharmacology,
G Piazzesi, and M Linari, and V Lombardi
August 1999, Journal of muscle research and cell motility,
G Piazzesi, and M Linari, and V Lombardi
January 1988, Advances in experimental medicine and biology,
G Piazzesi, and M Linari, and V Lombardi
June 1973, Acta physiologica Scandinavica,
G Piazzesi, and M Linari, and V Lombardi
June 1989, Acta physiologica Scandinavica,
G Piazzesi, and M Linari, and V Lombardi
May 1996, The Journal of physiology,
G Piazzesi, and M Linari, and V Lombardi
November 1990, The Journal of physiology,
G Piazzesi, and M Linari, and V Lombardi
January 1992, The Journal of physiology,
G Piazzesi, and M Linari, and V Lombardi
June 2000, Biophysical journal,
G Piazzesi, and M Linari, and V Lombardi
May 1979, Acta physiologica Scandinavica,
Copied contents to your clipboard!